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Abstract: In this article we consider boundary value problems for some linear and nonlinear differential equations with partial 
derivatives of the sixth, fifth, fourth and third orders. We write out conditions on equation coefficients for which existence and 
uniqueness of solutions from Sobolev's space occur. If these conditions on equation coefficients are not valid, then there are given 
examples when solution is not unique, or is not unstable, or does not belong to Sobolev's space from existence and uniqueness 
theorem even for analytical coefficients and analytical right side of differential equation. After S.P. Novikov’s fundamental study in 
1974 the interest to the nonlinear Korteweg–de Vries equation, Kadomtsev-Petviashvili equation and other nonlinear equations 
significantly grew. In this study of such equations we used methods of algebraic geometry integration and expansion method. In 
these studies exact solutions of special nonlinear equations series in partial derivatives play a big role. Solvability of similar 
equations was also studied in articles of A.I. Kozhanov, N.A. Larkin and other authors. The aim of this article is to find some exact 
solutions for special series partial differential equations. Solution graphs of such problems for linear equations and for the Korteweg–
de Vries, Burgers-Korteweg-deVries, and Kadomtsev-Petviashvili equations are constructed. 
 
Keywords: linear and nonlinear equations, Korteweg–de Vries equation, boundary conditions, non-uniqueness of solution, instability 
of solution, graphs of solutions 
 

 
 

INTRODUCTION 
Equations of higher order were studied in papers of 

V.N. Vragov [1], G.V. Devidenko, S.V. Uspensky [2], 
E.I. Egorov, S.G. Pyatkov, S.G. Popov [3], and 
A.V. Chueshev [5]. Formulations of boundary 
problems for the fourth-order equations were studied in 
the paper of A.I. Kozhanov [4]. 

Let us consider an equation in a domain 
{( , ) ,D x t= ∈ 2R  0 0(0, ), (0, )}.x x t t∈ ∈  

1 2 3 4

5 6 7 8

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

ttt tt t xxxxxx

xxxxx xxxx xxx xx

a x t u a x t u a x t u a x t u
a x t u a x t u a x t u a x t u

+ + + +

+ + + + +
 

9 10( , ) ( , ) ( , ),xa x t u a x t u f x t+ + =  ( , )ja x t ∈C6 ( )D , 
1, 2, ,10.j = …                               (1) 

The aim of this article is to prove the existence and 
uniqueness theorem of weak solution, construct exact 
solutions and explicit examples of ill-posed problems 
for the Eq. (1). Such equations can be used to 
regularize mixed type equations of second order as it 
was suggested in [1]. Also, the Korteweg–de Vries 
linearized equation refers to (1). A review of studies on 
this subject in the modern theory of partial differential 
equations is given in this article.  

Calculation of exact and numerical solutions, a 
progressing wave in particular, and linear equations 
solutions plays a big role in the soliton theory. 
Equations of mathematical models of physical 
phenomena that occur in engineering industry, 

chemistry, biology, mechanics and physics are usually 
described by nonlinear equations. Thus, it is very 
important to find exact solutions of nonlinear partial 
differential equation which can help to understand 
mechanisms of these physical models. 

Third-order differential equation (1) 
with respect to t 

Problem 1. Let us consider the following equation in D 

1 2 3 4ttt tt t xxxxxx xxxxx xxxxu a u a u u a u a u+ + + + + +  

5 6 7 8 ( , ),xxx xx x ja u a u a u a u f x t a+ + + + = ∈ R, 
1, 2, ,8,j = …                           (2) 

with boundary conditions  

0t
u

=
=

00,
0,t t t t

u
= =

=                       (3) 

0 0 00, 0, 0,
0.xx xxxxx x x x x x x x x

u u u
= = = = = =

= = =     (4) 

Theorem 1. Let it be that 2( , ) ( )f x t L D∈  and 
equation coefficients (2) satisfy conditions: 

1) 3 5 7 0;a a a= = =  
2) 1 4 60, 0, 0;a a a< < >  
3) ( )1 0 13 2 0;a t t+ − ≥ δ >  

4) ( )8 0 2 22 0.a t t a− − − ≥ δ >  
Then a solution for (2), (3), and (4) exists and is 

unique for the space 3,2 ( ).H D  
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The space 3,2 ( )H D  is a closure of the space of 
infinitely differentiable functions satisfying boundary 
conditions (3) and (4) with respect to the norm 

( )3,2

1
2

2 2 2 2 2 2
( )

.x t xx tt xxxH D
D

u u u u u u u dD
⎛ ⎞

= + + + + +⎜ ⎟
⎝ ⎠
∫  

The theorem is proved as in [6]. 
Problem 2. If conditions of the theorem for 

coefficients of this equation are not satisfied, then a 
solution of this problem is not unique. Let the 
following conditions be satisfied for coefficients of the 
Eq. (3):  

1) 3 5 7 0;a a a− + =  
2) 1 1;a = −  
3) 2 1;a =  
4) 4 6 81 0.a a a− + − + =  
A non-zero solution for the boundary problems (3) 

and (4) if 0 0
2,

3
x t π
= π =  for the Eq. (2) is the 

function 

2 3 3( , ) sin 3 sin 3 cos .
2 2

t

u x t x e t t
⎛ ⎞⎛ ⎞

= + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

Fig. 1 shows a graph of this solution in the 
3-dimensional space.  

 
Fig. 1 

Problem 3. Let us consider in the domain 
{( , )D x t= ∈R2, (0, ), (0, )}x t∈ π ∈ ∞  the following 

equation  

0ttt tt t xxxxxx xxxx xxu u u u u u− − + + − =  

with initial conditions  

60

sin ,
t

nxu
n=

=  40

sin ,t t

nxu
n=

=  20

sin
tt t

nxu
n=

=  

and boundary conditions (4). An unstable solution for 
this problem is the function 

2

6

sin( , ) .
n te nxu x t

n
=  

Problem 4. Let us consider in D an equation  

2 ( , ),ttt tt t xxxxxx xxxx xxu u u u u u u f x t− − + − + − =       (5) 

with boundary conditions (3) and (4). 
Theorem 2. Let it be that 2( , ) ( ).f x t L D∈  Let an 

inequality 03 2 0t− ≥  be hold. Then a solution of the 

problems (3) and (4) for the Eq. (5) from 3,2 ( )H D  
exists and is unique.  

Theorem is proved as in [6]. 
Problem 5. Let us consider the Eq. (5) with the right 

side ( , ) 0f x t =  and initial conditions ( n∈N) in 

{( , )D x t= ∈R2, 0, 0}x t> >  

0 0 0
.

x
n

t ttt t t
u u u e

−

= = =
= = =  

An unstable solution for this problem is the 

function ( , ) .
t x

nu x t e
−

=  
An unstable solution for the Cauchy problem with 

the respect to x in the same domain D 

0 0 0 0 0 0

t
n

x xx xxx xxxx xxxxxx x x x x x
u u u u u u e

−

= = = = = =
= = = = = =  

of the Eq. (5) is the function ( , ) .
t x
nu x t e

− +

=  

Problem 6. Let it be that 0
2 .

3
t π
=  Note that the 

equation 2 sin 0
4

xy e x− π⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

 has a 

denumerable number of solutions on the ray [0, )∞  
(Fig. 2). Let us consider only two solutions of this 

equation 0 and 0 ,x  where 0 , .
4 2

x π π⎛ ⎞∈ π+ π +⎜ ⎟
⎝ ⎠

 

 
Fig. 2 

In {( , )D x t= ∈ R2, 0 0(0, ), (0, )}x x t t∈ ∈  let us 
consider an equation 

0ttt tt t xxxxxx xxxx xxu u u u u u u− + + − − + =  

with boundary conditions  

0 0 00 0, 0, 0 0,

0
0.

t x xxxxt t t t x x x x x x x

xxxxx x

u u u u u

u
= = = = = = = =

=

= = = = =

= =
 

A nonzero solution of this problem is the function 

2

1 2

3( , ) 2 sin 3 sin
4 2

33 cos ( ) ( ).
2

t
xu x t e x e t

t y x y t

−
⎛ ⎛ ⎛ ⎞⎛ π ⎞⎛ ⎞ ⎜= + − + −⎜ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎝⎝

⎞⎞⎛ ⎞
⎟− = ⋅⎟⎜ ⎟⎜ ⎟ ⎟⎟⎝ ⎠ ⎠⎠

 

Figures of graphs 1 1( )y y x=  (Fig. 3), 2 2 ( )y y t=  
(Fig. 4), 1 2( , ) ( ) ( )u x t y x y t= ⋅  (Fig. 5). 
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Fig. 3                                 Fig. 4 

 
Fig. 5 

Second order differential equation (1) 
with respect to t 

In N.A. Chuesheva’s and E.V. Maksimova’s article 
[7] the following equation in {( , ) : (0,1),D x t x= ∈  

}(0,10t∈  was considered 

( , )tt t xxxx xxx xx xu eu u au bu cu du f x t+ − + + + + =  (6) 

with boundary conditions  

, 1 , 1 , 1
0.xt o t x o x x o x

u u u
= = = = = =

= = =             (7) 

Let the space 4,2 ( )H D  be obtained by a closure of 

the space of functions С4 ( )D  satisfying boundary 
conditions (7) with respect to the norm 

( )4,2

1
2

2 2 2 2 2 2 2 2
( )

.x t xx tt xxx xxt xxxxH D
D

u u u u u u u u u dD
⎛ ⎞

= + + + + + + +⎜ ⎟
⎝ ⎠
∫  

Theorem 3. Let it be that 2( , ) ( ).f x t L D∈  Let the 
following conditions be satisfied for coefficients of the 

Eq. (6): 
2

1) 0; 2) 0; 3) 0.
128

a b dπ
≥ > − ≥ δ >  Then 

a solution ( , )u x t of the boundary problem (7) of the 
Eq. (6) from the space 4,2 ( )H D  exists and is unique. 

A proof of the theorem is given in [7]. 
If we consider the following conditions for the 

Eq. (6) on boundary domain D 

, 1 , 1 , 1
0xxt o t x o x x o x

u u u
= = = = = =

= = =  

then it is true that 
Theorem 4. Let it be that 2( , ) ( ),f x t L D∈  and 

coefficients of the Eq. (6) satisfy conditions: 

1) 0; 2) 0; 3) ( ) 0.
8

a b b dπ
≥ > − ε ⋅ − ≥ δ >  Then a 

solution ( , )u x t  of the boundary problem (7) for the 
Eq. (6) from the space 2,1( )H D  exists is unique.  

Here a norm in the space 2,1( )H D  is given by an 
equality  

( )2,1

1
2

2 2 2 2
( )

.x t xxH D
D

u u u u u dD
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠
∫  

The theorem is proved as in [7]. 
Problem 7. In {( , )D x t= ∈ R2, (0, ),x∈ π  
(0, )}t ∈ π  with 4, 3, 4, 5, 0a b c d e= = = = =  for 

the Eq. (6) with boundary conditions 

, , ,
0xxt o t x o x x o x

u u u
= =π = =π = =π

= = =  

a function ( , ) sin sin 0u x t x t= ⋅ ≠  is not a unique 
solution. 

Problem 8. In { ( , )D x t= ∈R2, 20, ,
3

x π⎛ ⎞
∈⎜ ⎟
⎝ ⎠

 

( )0, }t ∈ π  let us consider an equation 

( , ) ( , ) ( , ) ( , ) 0tt xxxx xxx xu x t u x t u x t u x t+ + − =      (8) 

with boundary conditions 

220, 0,0, 33

0.xxxt t x xx x
u u u ππ= =π = == =

= = =          (9) 

The solution of problems (8) and (9) is a function  

2 3( , ) sin sin .
2

x

u x t t e x
−

= ⋅  

Note. A derivative of any order with respect to a 
variable x or t of this function is not also a unique 
solutions of the problem (8) in a rectangle 

{( , )D x t= ∈R2, 1 2 1 2( , ), ( , )}.x x x t t t∈ ∈  For example, 

2
1

1 3 3( , ) sin sin 3 cos ( ) ( )
2 2 2

x

xu x t t e x x y t y x
− ⎛ ⎞

= − ⋅ − = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 

is a solution of (8) with boundary conditions  

( ) ( ) ( )
1 21 2

0, ,,
0.x x x xxxt t x x x xx x x x

u u u
= =π = == =

= = =  

Fig. 6 represents a graph of the function 

21 3 3( ) sin 3 cos .
2 2 2

x

y x e x x
− ⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Fig. 6 

Problem 9. In ( ){ }( , ) : (0, ), 0,1D x t x t= ∈ π ∈  let us 
consider an equation 
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( )21 ( , ) ( , )

3 3(1 ) 1 sin
4 4 2

tt xxxx xxx xx x

t

t u u a x t u u a x t u

tu t u x

− − + − + +

⎛ ⎞+ + − = −⎜ ⎟
⎝ ⎠

 (10) 

with boundary conditions  

, ,
0.t xxt o t o x o x x o x

u u u u
= = = =π = =π
= = = =  

With an analytical coefficient ( , )a x t  and analytical 
right side in D  of the Eq. (10) a solution of the 
problem  

( )
3
2

3( , ) 1 1 sin
2

u x t t t x⎛ ⎞⎛ ⎞= − − − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

doesn’t belong to the class of functions 2
2 ( )W D  as in [1].  

Problem 10. In ( ){ }( , ) : (0, ), 0,D x t x t= ∈ π ∈ ∞  let 
us consider an equation 

( ) ( ) ( ) ( ) 0n n n n

tt xxxx xx t
u u u u− + + =  

with boundary conditions 

( )
( )

5 3 ,

,

sin sin, ,

0.

n n n

t o t x o xt o

n

xx x o x

nx nxu u u
n n

u

= = =π=

= =π

= = =

= =
 

The unstable solution of this problem is a function 
2

5

sin( , ) .
n te nxu x t

n
⋅

=  

 
First-order differential equation (1) 

with respect to a derivative t 
In N.A. Chuesheva’s and I.O. Korkina’s article [8] 

in { }( , ) : (0,1), (0,1)D x t x t= ∈ ∈  was considered an 
equation 

( ) ( , ) ( , )
( , ) ( , ) ( , )

t xxxx xxx xx

x

Lu k t u u c x t u b x t u
a x t u d x t u f x t
= + + + +

+ + =
   (11) 

with initial boundary conditions  

00 01
1

0, 0, 0.x xt xx
x

u u u== ==
=

= = =            (12) 

Theorem 5. Let the right side of the Eq. (11) be a 
function 2( , ) ( ).f x t L D∈  Let coefficients of the 
Eq. (11) satisfy conditions: 

1) ( , ), ( , ), ( , ), ( , )a x t b x t c x t d x t ∈  С4 ( ),D  
( )k t ∈С3 [0,1];  

2) (0, ) 0, (1, ) 0, ( , ) 0, ( , ) ;xc t c t c x t x t D≤ ≤ < ∈  
3) (1) 0;k ≤  
4) let there be real constants 1 2, ,λ δ δ  such that  

1

( ) ( ) ( , ) ( , ) ( , )

2 ( , ) 0, ( , ) ,
t x xx xxxk t k t a x t b x t c x t

d x t x t D

−λ ⋅ − − + − +

+ ≥ δ > ∈
  

22 ( , ) 3 ( , ) 0,xb x t c x t− + ≥ δ >  ( , ) .x t D∈  

Then there exists and is single a solution u(x,t) of 
the boundary problem (12) for the Eq. (11) from the 
space 4,1( ).H D  

4,1( )H D  is a Hilbert space with the norm  

( )4,1

1
2

2 2 2 2 2 2
( )

.x t xx xxx xxxxH D
D

u u u u u u u dD
⎛ ⎞

= + + + + +⎜ ⎟
⎝ ⎠
∫  

Theorem is proved in [8]. 
Note. Let coefficients of the Eq. (11) be, for 

example, the following functions 

( , ) 1;a x t x= +  ( , ) 5;d x t =  ( , ) 2 ;c x t x= −  
( , ) 8;b x t x= − −  2( ) .k t t= −  

Constants, for example, are 1 21, 8, 9.λ = δ = δ =  
Then all theorem conditions are satisfied.  

Problem 11. If we set another conditions for the Eq. 
(11) on the boundary of D 

000 11
0, 0, 0,xxx xxxt xx

u u u === ==
= = =           (13) 

then we can prove the following theorem as the 
theorem 5 

Theorem 6. Let the right side of the Eq. (11) be a 
function 2( , ) ( ).f x t L D∈  Let coefficients of the Eq. 
(11) satisfy conditions: 1) ( , ), ( , ), ( , ),a x t b x t c x t  

( , )d x t ∈  С4 ( ),D  ( )k t ∈  С3[0,1];  
Let the following conditions be satisfied for these 

coefficients in D : 
1) (1) 0;k ≤  
2) (0, ) (0, ) (0, ) 0, (1, ) (1, )x xx xa t b t c t a t b t− + ≥ − +  
(1, ) 0, [0,1];xxc t t+ ≥ ∈  

3) let there be real constants 1 2 3, , ,λ δ δ δ  such that 

1

( ) ( ) ( , ) ( , ) ( , )
2 ( , ) 0,

t x xx xxxk t k t a x t b x t c x t
d x t

−λ ⋅ − − + − +
+ ≥ δ >

 

22 ( , ) 3 ( , ) 0,xb x t c x t− + ≥ δ >  ( , ) ,x t D∈  

3
( , )

8 1(1 ) max ( , ) 0,
2 x

x t D
c x t

∈

⎛ ⎞− δ − ≥ δ >⎜ ⎟π⎝ ⎠
 0 0,1.< δ <  

Then a solution u(x,t) of the boundary problem (13) 
for the Eq. (11) from the space 4,1( )H D  exists and is 
unique. 

Note. For example, let coefficients of the Eq. (11) 
be the following functions 

( , ) 1;a x t x= +  ( , ) 5;d x t =  ( , ) 2 ;c x t x= −  
( , ) 8;b x t x= − −  2( ) .k t t= −  

Constants, for example, are 11, 8,λ = δ =  

2 39, 0,5.δ = δ =  Then all theorem conditions are 
satisfied. 

Problem 12. In { }( , ) : (0, ), (0,1)D x t x t= ∈ π ∈  let 
us consider a model equation 

3 1(1 ) ( , ) ( , ) sin
2 2t xxxx xxx xx xt u u a x t u u a x t u u x− + + − + − = −  
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with initial condition 0
0

t
u

=
=  and boundary 

conditions 0 00; 0.x xx xxx
x x

u u= =
=π =π
= =  

Functions ( , ),a x t  (1 ),t−  1 sin
2

x−  are analytical in 

D. Although a solution of the problem is a function 
4,1( , ) ( 1 1)cos ( ).u x t t x H D= − − ∉  

Problem 13. Consider the Korteweg–de Vries 
linearized equation  

( , ) ( , ) 0.t xxxu x t u x t+ =  

A solution of this equation is a complex function 
with c d≠ ±  

( ) ( )3 3
3

1 11 3 1 3
2 2( , ) .

a i x a i xat axu x t be ce de le
− + − −− ⎛ ⎞

= ⋅ + +⎜ ⎟
⎝ ⎠

 

A real solution of this equation is a function 

2 3 3( , ) sin 3 cos .
2 2

x
tu x t be e x x

−− ⎛ ⎞
= ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
 (14) 

Note, that (14) is a solution for the following 
equation with continuous coefficients  

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

t xxxxx xxxx

xxx xx x

a x t u x t b x t u x t c x t u x t
a x t u x t b x t u x t c x t u x t

+ + +
+ − − =

 

with conditions on the boundary of 

( )2( , ) : (0, ), 0,
3

D x t x tπ⎧ ⎫= ∈ ∈ ∞⎨ ⎬
⎩ ⎭

 

2 20, 0,
3 3

0.xxxx x x x
u uπ π

= = = =
= =  

Some exact solutions of Korteweg–de Vries, 
Degasperis-Procesi and Ramani equations. 

In N.A. Chuesheva’s papers [8] and [9] exact 
solutions for the Korteweg–de Vries, Burgers-
Korteweg-deVries, and Kadomtsev-Petviashvili 
nonlinear equations are written out.  

Problem 14. In [10] the Cauchy problem for the 
following fifth-order Korteweg–de Vries equation is 
considered 

( ) ( )( ) ( )23
1 2 3 0t xxxxx x xx xx x

u u c u c u c uu− + + + =  R2, 

(0, ) ( ),u x u x x= ∈  R, 

where 1 2 3, ,c c c ∈  R, 3 0.c ≠  A function ( , )u x t  is 
real-valued or complex. Conditions of problem 
correctness are written out in (10). 

In this article let us write out some particular 
solutions of this equation if:  

1) 1 2 3 1c c c= = =  then there is a real function 

( )2 65 1454( , )
3 3 145
bu x t

+
= − +

−

( ) ( )( )
2

2 5
2 25 31 145

tanh 2 17 145 ;
77 3 145

b
a bx b t

−
+ − − + +

−
 

2) 1 2 31, 1c c c= − = =  then there is a complex 
function 

( )2 55 954( )
3 3 95

ibf z
i

+
= − −

+

( ) ( )( )
2

2 5
2 35 29 95

tanh 2 7 95 ;
43 3 95

b i
a bx b i t

i

+
− − − + +

−
 

3) 2 1 31, 1c c c= − = =  then there is a real function 

( )2 2 2 5( , ) 8 12 tanh 16 .u x t b b a bx b t= − − − +  

For example, if 1,b =  16 ,y x t= − +  

21
1 3ln
2 21

3

a

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⋅
⎜ ⎟
−⎜ ⎟⎜ ⎟

⎝ ⎠

 a function graph 4 ( )z u y= =  

( )28 12 tanh )a y= − − +  takes the form (Fig. 7).  

 
Fig. 7 

Problem 15. In [11] the Cauchy problem and local 
correctness for the Degasperis-Procesi equation with 
the following variance term are studied  

04 3 , ( ,0) .t txx xxx xxxxx x x xx xxxu u u u uu u u uu u x u+ + − + = + =  

Bourgain’s method which refers to the Korteweg–
de Vries periodic equation and Schrödinger equation is 
used to prove existence of the Cauchy problem solution 
for this equation. Let us write out exact solution of this 
equation 

2 2 23 12( , ) 8 12 tanh .
5 5

u x t b b a bx bt⎛ ⎞= − − − + +⎜ ⎟
⎝ ⎠

 

For example, if 1,b =  12 ,
5

y x t= +  

3711 60ln
2 371

60

a

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⋅
⎜ ⎟
−⎜ ⎟

⎝ ⎠

 then ( , )u x t  a function graph 

takes the form as for ( )2( ) 2 3 tanh .z u y a y= = − − +  
Problem 16. In [12] the following nonlinear 

differential Ramani equation of the sixth order was 
considered  

( )215 15 45 5
15 15 5 0, ( , ).
xxxxxx x xxxx xx xxx x xx xxxt

x xt t xx tt

u u u u u u u u
u u u u u u u x t
+ + + − −

− − − = =
  

With the help of G'/G-method a solution of this 
differential equation was found. 
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Exact solution of the Ramani equation is given in 
[13]. Let us consider a similar fourth-order equation  

( )2( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) 0,

x xxxx xx xxx x xx

x xt t xx

au x t u x t bu x t u x t c u x t u x t
du x t u x t eu x t u x t

+ + +

+ + =
 

, , , ,a b c d e  are real constants and 0, 0.c d e≠ + ≠  
The function 

3
2

2 1 2

3

4 ( )6 ( 2 ) tanh
( , )

c a b tc b a c c x
d e

u x t c
c

⎛ ⎞+
+ − − +⎜ ⎟+⎝ ⎠= −  

is a solution of this equation. 
In a bounded domain D with a smooth boundary Γ  

a function  

( )2( , ) 2 2 tanh
2

u x y a b x y
⎛ ⎞

= + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

is a solution of the fourth-order nonlinear equation 

( )23

0.
x yyxx xxx yyy xxy xyy x xx

x xy y xx

u u u u u u u u

u u u u

⋅ − + − + + ⋅ −

− ⋅ − =
 

Problem 17. In two-dimensional geometry the 
following Kadomtsev-Petviashvili equation is a 
generalization of the third-order Korteweg–de Vries 
equation: 

( )6 0.t xxx x yyu u u u au
x
∂

+ + − =
∂

 

In [9] the exact solution of this equation is written out 

( )

2 2 4
2 3 2 4 2

4 2
2 1 2 3 4

6 ( , , ) ( 8

12 tanh ).

c u x t y c c ac c

c c c x c t c y

⋅ ⋅ = − + + −

− + + +
 

A function graph is the same as for 
( )2( ) 2 3tanh .z u y a y= = − − +  

Problem 18. If any dissipation, the third-order 
Korteweg–de Vries equation goes over into the 
Bürgers–Korteweg–de Vries equation  

6 0.t xxx x xxu u uu au+ + − =  

In [9] the exact solution of this equation is written 
out 

3
33 250

( , )
150

a c
u x t

a
−

= −  

2 2
2

1 3 1 3
1 1tanh tanh .

25 10 50 10
a ac ax c t c ax c t⎛ ⎞ ⎛ ⎞− + + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Let 3 1 3
4 11, ,

250 10
a c y c ax c t= = = + +  then a 

function graph 
150 ( )z u y= ⋅  take the form shown on Fig. 8.  

 
Fig. 8 

 
CONCLUSION 

For the first time we have constructed new 
examples of ill-posed formulations of boundary 
problems for some linear and nonlinear partial 
differential equations of the higher order that are 
connected with some important modern equations of 
mathematical physics. In particular, we have 
constructed examples and graphs of explicit solutions 
for the third and fifth-order Korteweg–de Vries 
equations, linearized Korteweg–de Vries equation, 
Degasperis-Procesi equation and Ramani equation. 
Also we have given a review on results obtained by 
other authors.  
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