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Abstract. In the present paper we give a rough classification of exterior differential forms on a Riemannian manifold. We define 
conformal Killing, closed conformal Killing, coclosed conformal Killing and harmonic forms due to this classification and consider 
these forms on a Riemannian globally symmetric space and, in particular, on a rank-one Riemannian symmetric space. We prove 
vanishing theorems for conformal Killing L2-forms on a Riemannian globally symmetric space of noncompact type. Namely, we 
prove that every closed or co-closed conformal Killing L2-form is a parallel form on an arbitrary such manifold. If the volume of it is 
infinite, then every closed or co-closed conformal Killing L2-form is identically zero. In addition, we prove vanishing theorems for 
harmonic forms on some Riemannian globally symmetric spaces of compact type. Namely, we prove that all harmonic one-forms 
vanish everywhere and every harmonic r-form  2r  is parallel on an arbitrary such manifold. Our proofs are based on the Bochner 

technique and its generalized version that are most elegant and important analytical methods in differential geometry “in the large”. 
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INTRODUCTION 

In the present paper we consider conformal Killing, 
closed conformal Killing, coclosed conformal Killing 
and harmonic forms which are defined on Riemannian 
globally symmetric spaces. In particular, we prove 
vanishing theorems for conformal Killing, closed 
conformal Killing and coclosed conformal Killing  
L2-forms on Riemannian globally symmetric spaces of 
noncompact type. In addition, we prove vanishing 
theorems for harmonic forms on some Riemannian 
globally symmetric spaces of compact type. Our proofs 
are based on the Bochner technique and its generalized 
version that are most elegant and important analytical 
methods in differential geometry “in the large”. 

The results of the present paper were announced at 
the International Conference "Differential Geometry" 
organized by the Banach Center from June 18 to June 
24, 2017 at Będlewo (Poland) and at the International 
Conference "Modern Geometry and its Applications" 
dedicated to the 225th anniversary of the birth of  
N.I. Lobachevsky and organized by the Kazan Federal 
University from November 27 to December 3, 2017 at 
Kazan (Russian Federation).  

 
PRELIMINARIES 

More then thirty years ago Bourguignon has 
investigated (see [1]) the space of natural (with respect 
to isometric diffeomorphisms) differential operators of 
order one determined on vector bundle Mr  of exterior 

differential r-forms and taking their values in the space 
of homogeneous tensor fields on  gM , .  

Bourguignon has proved the existence of three basis 
natural operators of this space, but only the following 
two 1D  and 2D  of them were recognized. The first 

operator 1D  is the exterior differential operator 

MCMCd rr 1:    and the second operator  

2D  is the exterior co-differential operator 

MCMCd rr 1:   . 
About the third basis natural operator 

3D , it was said 

that except for case r = 1, this operator does not have 
any simple geometric interpretation. Next, for the case  
r = 1, it was explained that the kernel of this operator 
consists of infinitesimal conformal transformations  
on  gM , .  

In connection with this, we have received a 
specification of the Bourguignon proposition and proved 
(see [4]) that the basis of natural differential operators 
consists of three operators of following forms:  
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for an arbitrary exterior differential r-form   and any 
vector fields rXXX ...,,, 21  on M.  

The kernel of 1D  consists of closed exterior 

differential r-forms, the kernel of 2D  consists of co-

closed exterior differential r-forms and kernel of 
3D  

consists of conformal Killing r-forms or, in other words, 
conformal Killing-Yano tensors of order r that constitute 
three vector spaces Dr(M, ℝ), Fr(M, ℝ) and Tr(M, ℝ) 
respectively. These vector spaces is subspaces of the 
vector space of exterior differential r-forms on  gM ,  

which we denote by r(M, ℝ). 
Remark. The concept of conformal Killing tensors 

was introduced by S. Tachibana about forty years ago 
(see [5]). He was the first who has generalized some 
results of a conformal Killing vector field (or, in other 
words, an infinitesimal conformal transformation) to a 
skew symmetric covariant tensor of order 2 named him 
the conformal Killing tensor. Kashiwada has generalized 
this concept to conformal Killing forms of order  

2r  (see [18]). The theory of conformal Killing forms 
is contained in the monographs [9] and [15]. In addition, 
there are many various applications of these tensors in 
theoretical physics (see, for example, [3]; [4]; [9]; [10]; 
[20]; [21]; [22]). In particular, we have proved that the 
vector space Tr(M, ℝ) on a compact n-dimensional  
(1  r  n – 1) Riemannian manifold  gM,  is finite-

dimensional. In addition, the number   Mrt Tr(M, ℝ) 

is a conformal invariant M of  gM,  such that  

 Mrt    Mr nt 
. 

The condition 
23 kerker DD   characterizes an  

r-form   as co-closed conformal Killing form. Therefore, 
the space of all co-closed conformal Killing r-forms we 
can define as Kr(M, ℝ)  Tr(M, ℝ)  Fr(M, ℝ). A co-
closed conformal Killing form is also called as the 
Killing-Yano tensor (see, for example, [9, pp. 426–427]; 
[10; pp. 559–564]).  

In turn, the condition 21 kerker DD   

characterizes the form   as a closed conformal Killing 
form or closed conformal Killing-Yano tensor (see, for 
example, [9, pp. 416]; [23]). Sometimes, closed conformal 
Killing forms are also called planar forms (see [16]). 
Therefore, the space of all closed conformal Killing  
r-forms we can define as Pr(M, ℝ)  Tr(M, ℝ)  Dr(M, ℝ).  

Remark. The concept of Killing tensors was 
introduced by K. Yano about fifteen years ago  
(see [19]). He was the first who has generalized some 
results of a Killing vector field (or, in other words, an 
infinitesimal isometric transformation). In turn, planar 
forms generalized the concept of concircular vector 
fields. In addition, we have proved that the vector spaces 
Kr(M, ℝ) and Pr(M, ℝ) on a compact n-dimensional  
(1  r  n – 1) Riemannian manifold  gM,  are finite-

dimensional. Moreover, the numbers   Mrk  Kr(M, ℝ) and   Mrp Pr(M, ℝ) are conformal invariant of 

 gM,  such that  Mrk    Mr np   (see [15] and [16]). 

The condition 21 kerker DD   characterizes the 

form   as a harmonic form (see [19]; [24, pp. 107–113]). 
Hence, the space of all harmonic r-forms we can define as 

Hr(M, ℝ)  Dr(M, ℝ)  Fr(M, ℝ). On a closed and 
oriented Riemannian manifold  gM ,  the condition 

 dd kerker  is equivalent to the following 

condition  ker  (see, for example, [37 pp. 202]). 

Remark. Harmonic forms are a classical object of 
investigation of differential geometry for the last seventy 
years, beginning with the well-known scientific works of 
Hodge (see, for example, [24, pp. 107–113] and [25]). It 
is well known by Hodge that the vector space Hr(M, ℝ) 
of harmonic r-forms on a compact n-dimensional  
(1  r  n – 1) Riemannian manifold  gM,  is finite-

dimensional. Moreover, the dimension of Hr(M, ℝ) 
equals to the Betti number  Mrb  of  gM,  such that 

 Mrb    Mr nb 
 (see [2, pp. 202–208; 385–391]). 

In conclusion, we denote by Cr(M, ℝ)  the  
vector space of parallel or covariantly constant  
r-forms on M with respect to  , i.e.  
Cr(M, ℝ)  Tr(M, ℝ)  Dr(M, ℝ)  Fr(M, ℝ). 

Riemannian symmetric spaces are also a classical 
object of investigation of differential geometry as 
differential forms. Cartan obtained the basic theory of 
symmetric spaces between 1914 and 1927. Riemannian 
symmetric spaces have been studied by many others 
authors. In particular, beginning in the 1950s, Harish-
Chandra, Helgason, and others developed harmonic 
analysis and representation theory on these spaces and 
their Lie groups of isometries (see, for example,  
[2, pp. 235–264]; [13]; [17]; [26]; [38]; [39, pp. 222–292]).  

We recall here that the Riemannian symmetric space 
is a finite dimensional Riemannian manifold  M,g , such 

that for every its point x  there is an involutive geodesic 

symmetric xs , such that x  is an isolated fixed point of 

xs .  M,g   is said to be Riemannian locally symmetric if 

its geodesic symmetries are in fact isometric. This is 
equivalent to the vanishing of the covariant derivative of 
the curvature tensor R of  M,g  (see [39, p. 244]).  

A Riemannian locally symmetric space is said to be a 
Riemannian globally symmetric space if, in addition, its 
geodesic symmetries are defined on all  M,g .  

A Riemannian globally symmetric space is complete 
(see [39, p. 244]). In addition, a complete and simply 
connected Riemannian locally symmetric space is a 
Riemannian globally symmetric space (see [39, p. 244]). 

Riemannian globally symmetric spaces can be 
classified by classifying their isometry groups. The 
classification distinguishes three basic types of 
Riemannian globally symmetric spaces: spaces of so-
called compact type, spaces of so-called non-compact 
type and spaces of Euclidean type (see, for example,  
[26; p. 207–208]; [39, p. 252]). An addition, if  M,g  is 

a Riemannian globally symmetric spaces of compact 
type then  M,g  is a compact Riemannian manifold with 

non-negative sectional curvature and positive-definite 
Ricci tensor (see [39, p. 256]).  

Let  M,g  be a Riemannian locally symmetric space, 

then 0Ric  for the Ricci tensor Ric  of  M,g . If, in 

addition,  M,g  is irreducible, then it is Einstein (see  
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[2, p. 254]). If in this case, the Einstein constant is 
positive, then it follows from Myer’s theorem (see  
[2, p. 171]) that the space  M,g  is compact. Then one can 

show that the curvature operator is nonnegative (see also 
[2, p. 254]). Therefore,  M,g  is a Riemannian globally 

symmetric space of compact type. If, in addition,  M,g  is 

simply-connected and its curvature operator is positive-
definite, then it is a Euclidian sphere (see also [2, p. 228]). 
Therefore, we can conclude that a simply-connected and 
irreducible Riemannian locally symmetric space with 
positive-definite curvature operator is a Euclidian sphere. 

On the other hand, if  M,g  is a Riemannian 

globally symmetric spaces of non-compact type then 
 M,g  is a complete non-compact Riemannian 

manifold with non-positive sectional curvature and 
negative-definite Ricci tensor, and diffeomorphic to a 
Euclidean space (see [39, p. 256]).  

We know that an irreducible Riemannian locally 
symmetric space  M,g  is Einstein (see [2, p. 254]).  

If the Einstein constant is negative, then it follows from 
Bochner’s theorem on Killing fields that the space is 
noncompact (see [2, p. 254]). In this case, one can 
show that the curvature operator is nonpositive (see 
also [2, p. 254]). Therefore,  M,g  is a Riemannian 

globally symmetric space of noncompact type. 
 

CONFORMAL KILLING FORMS  
ON RIEMANNIAN GLOBALLY  

SYMMETRIC SPACES 

In this section we consider the natural Hilbert space 

 MΛL r2  MΛC r  of 2L -forms on a complete 

noncompact Riemannian manifold  M,g  which is 

determined by the condition 
 

 
M

gVoldω
2  

 

for an arbitrary form  MΛCω r . 

First, we prove the following theorem for closed and 
coclosed conformal Killing 2L -forms on a Riemannian 
symmetric space of noncompact type that is a complete 
and simply connected Riemannian manifold of non-
positive sectional curvature. Side by side, its curvature 
operator R is nonpositive (see [39]). 

Theorem 1. Let  M,g  be an n-dimensional (n  3) 

simply connected Riemannian symmetric space of non-
compact type. Then every closed or co-closed conformal 
Killing 2L -form on  gM,  is a parallel form. If the 

volume of  gM,  is infinite, then every closed or co-

closed conformal Killing 2L -form on  gM,  is 

identically zero.  
Proof. In our paper [31] we have proved that an 

arbitrary closed (resp. coclosed) conformal Killing  
2L -form   is parallel on a complete noncompact 

Riemannian manifold  M,g  with nonpositive curvature 

operator. It means that Cr(M, ℝ)  Pr(M, ℝ)  Kr(M, ℝ). 
In this case, const

2  . If we suppose that the volume 

 MVolg
 of  gM,  is infinite then we obtain a 

contradiction with our condition that  MΛLω r2 .  

It remains to recall that a Riemannian globally 
symmetric spaces of non-compact type  M,g  is a 

complete non-compact Riemannian manifold with non-
positive sectional curvature.  

If a Riemannian symmetric space of non-compact 
type has an even dimension then the following theorem 
on conformal Killing 2L -forms is true.  

Theorem 2. Let  M,g  be a r-2 dimensional  2m  

simply connected Riemannian symmetric space of non-
compact type. Then every conformal Killing 2L -form of 
degree r  is parallel form on  gM, . If the volume of 

 gM,  is infinite, then every conformal Killing 2L -form 

of degree r is identically zero on  gM, .  

Proof. In our paper [31] we have proved that an 
arbitrary conformal Killing 2L -form of degree r is 
parallel form on r-2 dimensional complete non-compact 
Riemannian manifold  gM,  with negative semi-define 

curvature operator. It means that Cr(M, ℝ)  Tr(M, ℝ). If 
the volume of  gM,  is infinite, then every conformal 

Killing 2L -form of degree r is identically zero on  gM, . 

In this case, Theorem 2 is a corollary of this proposition. 
An important invariant of a symmetric space is its 

rank which is the maximal dimension of a totally 
geodesic flat subspace. In particular, rank-one symmetric 
spaces are an important class among symmetric spaces 
(see [16] and [17]). In his book [17], Chavel gave a 
beautiful account of the rank-one symmetric spaces from 
a geometric point of view up to the classification of 
them, which he left for the reader to pursue as a matter 
in Lie group theory. We prove the following theorem for 
conformal Killing forms on real rank-one symmetric 
spaces using his results. 

Theorem 3. Let  M,g  be a simply connected 

symmetric space of rank one type. If, in addition,  M,g  

is a space of compact type, and of odd dimension  
12  kn  for 1k ,  

then         ,112 !rn!r!nMtr   

       !!1!1 rnrnMkr    

and      !1!r!1  rnnMpr   

for an arbitrary kr 21  . 
Proof. We consider a rank-one Riemannian 

symmetric space  M,g  of compact type. If, in addition, 

 M,g  is a simply connected manifold of odd dimension 

12  kn  then  M,g  is a sphere of constant sectional 

curvature (see [13]). The vector spaces over ℝ of 
conformal Killing, coclosed and closed conformal 
Killing p-forms on an Euclidian n-sphere have finite 
dimensions which are equal to  
       !1!1!2tr  rnrnM , 

       !!1!1 rnrnMkr    

and      !1!r!1  rnnMpr , respectively (see [15] 

and [16]). This proves our Theorem 3. 
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HARMONIC FORMS ON A RIEMANNIAN 
GLOBALLY SYMMETRIC SPACES 

In this section we consider harmonic forms on a 
Riemannian globally symmetric space of compact type. 
In the simply connected case, “compact type” is 
equivalent to the compactness condition that was 
considered in Section 4 in [41]. 

First we prove the following theorem for harmonic 
forms on a Riemannian symmetric space of compact type 
that is a compact Riemannian manifold with non-negative 
sectional curvature and positive-definite Ricci tensor. Side 
by side, its curvature operator R is nonnegative  
(see [35]). In this case, the Bochner technique tells us that 
all harmonic r-forms (2  r  n – 1) are parallel and  
1-forms are identically zero (see [2, pp. 208; 212; 221]). 
Now, a parallel form is necessarily invariant under the 
holonomy. Thus, we are left with a classical invariance 
problem (see [37, pp. 306-307]). In this case, the Betti 
numbers     dim11   MbMb n

 H1(M, ℝ)  0 and 

  dimMbr  Hr(M, ℝ) 









r

n  for any 2,...,2  nr  

(see [2, p. 212]). Since there is exactly one harmonic  
0-form (a constant) on compact manifolds and the dual  
n-form then the Betti numbers     10  MbMb n

. We 

proved the following theorem.  
Theorem 4. Let (M, g) be an n-dimensional (n  2) 

non-compact simply connected Riemannian globally 
symmetric space of compact type. Then all harmonic 
one-forms vanish everywhere and every harmonic r-form 
(r  2) is parallel. In this case, the Betti numbers 

    011   MbMb n
 and   










r

n
Mbr

 for an arbitrary 

2,...,2  nr . 
In conclusion, we can formulate an obvious 

statement. 
Theorem 5. Let  M,g  be an n-dimensional simply 

connected symmetric space of rank one. If, in addition, 

 M,g  is a manifolds of compact type, and of odd 

dimension, then its Betti numbers     10  MbMb n
, 

    0... 11   MbMb n
. On the other hand, if  M,g  is 

a simply connected symmetric space of rank one, and 
of non-compact type, then  M,g  carries no harmonic 

L2-forms except when 2nr   in which case Hr(M, ℝ) 
is infinite dimensional. 

Proof. Chavel has proved in [17] that if  M,g  is a 
rank-one Riemannian symmetric space of compact type 
then it is one of the four spaces: Sn, ℝPn, CPn , HPn and 
OP2. The final is the 16-dimensional Cayley plane. 
Accordingly, compact-type symmetric spaces of rank-
one have strictly positive sectional curvature. In the case 
of odd dimension  M,g  is a Euclidian sphere  

(see [16]). On the other hand, it is well known that a 
compact Riemannian manifold  M,g  with positive 
constant sectional curvature admits no nonzero harmonic 
forms (see [2, p. 212]). Therefore, its Betti numbers 
    0... 11   MbMb n

 and     10  MbMb n
.  

On the other hand, if  M,g  is a real Riemannian 
symmetric space of non-compact type, and of rank one 
then it is one of the four spaces: Hn, CHn , HHn , OH2 , 
i.e., real hyperbolic space, complex hyperbolic space, 
quaternionic hyperbolic space and the octonionic 
hyperbolic plane (see [42]; [43]). We can normalize their 
Riemannian metrics so that the maximum of the 
sectional curvature is −1 (see also [42]; [43]). In this 
case, Dodziuk has proved that  M,g  carries no 

harmonic L2-forms except when 2nr   in which case 

Hr(M, ℝ) is infinite dimensional (see [32]). This 
completes the proof of Theorem 5. 
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