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INTRODUCTION

Search for the optimal shape (with the lowest 

drag) of the obstacle in a flow of a mixture of viscous 

compressible fluids (gases) is eventually associated 

with the problem of derivation of the shape functional, 

expressing the force of the obstacle resistance to the 

incident flow. This problem, in turn, requires a study 

of well-posedness of inhomogeneous boundary value 

problem for the corresponding equations and study of 

dependence of this boundary value problem solutions on 

the flow region shape. 

Most of the known results for Navier-Stokes 

equations for viscous compressible fluids and moreover 

for equations of mixtures of such media concerns flows in 

are as bounded by impenetrable walls, while the results of 

study of inhomogeneous boundary value problems remain 

fairly modest. Among the papers dealing with the last 

issue, we'd like to mention [l], which proves existence 
o theorem for non-stationary Navier-Stokes equations fr 

viscous compressible fluid with constant boundary value 

conditions, and [2], which establishes existence of a 

weak solution ofbarotropic viscous gas flow equations in 

convex domains with the outlet, independent on the time 

variable. Local strong solutions (close to a uniform flow) 

of stationary problems with inhomogeneous boundary 

value conditions were studied in [3–5] for two-dimensional

domains on the hypothesis that the velocity field at the 

boundary of the flow region is close to a prescribed 

constant. Important results relating to the existence of 

strong solutions of inhomogeneous boundary value 

problems for stationary Navier-Stokes equations in case 

of small Reynolds and Mach numbers were obtained in 

[ 6–8]. Results on the well-posedness of an inhomogeneous

boundary value problem for the equations of mixtures of 

viscous compressible fluids were obtained in [9]. 

The shape optimization theory is a section of 

variational calculus, where the functional arguments 

are shapes of geometrical and physical objects. A 

classic example of the shape optimization problem is 

the isoparametric Newto n's problem of the body of 

least resistance. Description of the general theory and 

bibliography on this subject are available in [ 10–15]. The

first global result concerning dependence on the solution 

region of compressible Navier-Stokes equations was 

obtained by Feireisl [16], and was further developed 
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denotes the vector field of class c2(IR 3) , equal to zero
in the neighborhood of the boundary L . Let us define a 
mapping x � y = fs (x) = x + &T(x) which defines the 
perturbation of the obstacle S . For small & , mapping 
x � Ts(x) is a diffeomorphism of the flow region 
n onto n& = B\S& ' where SE = t(S) is perturbed 
obstacle in a flow. 
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in a series of papers of Plotnikov, Ruban, Sokolowski 
[7, 8, 17–20). These studies also provide an algorithm 
for calculation of the drag functional derivatives 
determined in the collection of domains. 

The problem statement is as follows. Range 
of flow of viscous compressible fluid mixture is a 

domain n = B \ S of Euclidean space IR 3 of points 
x = (x1 ,x2 ,x3 ) , external with respect to an obstacle S 
(which is assumed to be a compact set) and bounded 
by a closed surface L. Let us assume that x � T(x) 

Stationary motion of the mixture of viscous 
compressible fluids in the region ns is described by the 
following equations [21): 

2 
°""'L (-(})) R (-(i) V)-(i) Re V ( ) J-(i) - 0. '""' . - 1 2 � ii ue + epie ue · ue + --2 P;e Pie + - m ;l"'e , 1 - , ,
j=I Ma 

div(P;e u!i)) = 0 in Qe , i = 1,2,

(1) 

(2) 

where u?), u?) represent the velocity fields of the ReynoldsandMachnumbers, respectively; Ly , i,j = 1,2, 
mixture components; Pis , p2s are the component refers to the second-order differential operators 

L (-(}))- A-(}) ( � )Vd" -(}) .. - 1 2 density functions, and corresponding pressures ij u --µ!i!J.U - Aj + /l,!i 
cvu , 1,1 - , ,

Pis = Pis CPis ), i = 1,2, are assumed to be sufficiently where constant (dimensionless) viscosity coefficients 
smoothfunctionsoftheirdensities; Re and Ma denotethe Aj

, A'!i satisfy the conditions 

µ11 > 0, 4µ11
. µ22 -(µ12 + µ21 ) 2 > 0, "-11 + 2µ11 > 0,

4("-11 + 2µ11 )("-22 + 2µ22 )-("-12 + 2µ12 + "-21 + 2µ21 ) 2 > 0. 

Summands JU) = (-) 1 (i) a(u?) - ui1)), a = canst > 0, i = 1,2, describe intensity of the momentum exchange between the
mixture components [22,23]. Equations (1) and (2) represent the laws of conservation of momentum and mass of the 
mixture components, respectively. 

QU) 

(a) (b) 

Fig. 1. Diagrams of the flow of the jth component of the mixture around the obstacle: (a) three-dimensional flow; 
(b) plane section.

For statement of boundary value conditions let us use the vector fields ijU), j = 1,2, of class C\IR3 
), vanishing in 

a neighborhood of the set S . Let us use vector functions ijU) on the boundary L of the domain B to allocate "inflow" 

areas: L{n = {x EL: ijU) -ii< O}, j = 1,2 , and "outflow" areas: L�ut = {x EL: ijU) · n > O}, j = 1,2 (see Fig. 1). Let us 
assume that the following conditions are satisfied. 

Condition 1. Sets rj = clL{n n (L \ L{n), j = 1,2, ("characteristic" surface areas) are closed one-dimensional varifolds, 
such that L = Lin ur1 UL�ut , and, among other things: f ij(J) ·nsd= 0, j = 1,2; ijU) · V(U(j) ·n) > C > Oon r1, j = 1,2,
where C > 0 is a constant. L 

Adjoin the following boundary value conditions to equations (1), (2) 
(3) uij) = ijU) on L, ii£})= 0 on ass , Pjs = PJe on Lin, j = 1,2,

where p J
c
, j = 1,2, are prescribed positive constants. 
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The force of drag to incident flow from the obstacle S 8 
is expressed by the formula 

Jn(Ss) = -u
00I, f[f[µii ( VusO)+�u2f)+liidivu2)1]-i:

2 
P;{ps)IJ·nds,

,=1 as. 1=1 
(4) 

where U00 is the constant vector that simulates the flow 
rate at "infinity". The problem of minimization this 
functional is solution to the problem of selection the 
optimal shape of the obstacle. 

The problem (1)-(3) can be conveniently reduced to 

a boundary value problem in the unperturbed domain 
n for one-parameter family of differential equations 
with perturbed coefficients. For this purpose, let us 
introduce the functions ;;Ul and P;,i = 1,2 defined in
n in accordance with the following formulas: 

;;<il (x) = N(x)uiil (x+cf(x)), P;(x) = P;8
(x+ sT(x)), x e f>.,i = 1,2,

where N(x) = (detM(x) M-1(x) , M(x) = I +cDT(x) , DT(x) = {
oT;(x)

} is theJacobimatrix ofthe mapping x f-7 T(x). 
ax

j 

As a result of this transformation, the problem (1)-(3) is transformed into the problem 
2 2 

�}iiAuUl -Vq; = :�:)iiA(uUl ;N)+ ReB(p;,u<i ) ,u<il ;N)+ (-1); S(u<2l -uO\N) in n,
j=l j=l 

(5) 

Where g = g(x;N) = �dteN(x) ; linear operators A, S and non-linear mapping B are defined according to the formulas

A(ii;N) = Au -(Nr)-1 
div(g-1NNrv(N-1�),

B(p,u, w;N) = p(Nr)-
1
� v{N-1w)), S(ii;N) = g · a (Nr)-

1
N-1 ii;

2 

qi = -L g-1(Aj + l;1)divu<j ) + Re
2 

P;(P;), i = 1,2, are effective viscous pressures; Y;J are elements of the matrix x-1
, 

j=I Ma 

inverse of the matrix x which elements are A
J +.?.,

ii
, i, j = I ,2 ; C5;J = Re

2 
r ii .

Ma -Ul • (*l 
The solution to (5) is built in the form of disturbance of specially selected sufficiently smooth flow u. 'P; 'q; , i. e.

2 

-Ul _ -(i) -(il _ • _ • A ( *) "( 1 ) u -u. +v ,P;-P;+<fJ;,q;-q;+lr;+ ·P; P; +�µu+/1,;jmj
, 

j=I 

h * 0 A Re . 
c: l h  f h. . w ere P; = P, = canst = --

2 
, m 1 are constants servmg 1or contro t e mass o t e mixture components m a

Ma 

domain n . As a result, a problem for perturbations [9] becomes the main object of study: 
2 2 

Lµ
ijAv(j) -Vn; = LµijA(ii(j);N) + ReB(p;,U(i ) ,u<il;N) + (-Ii S(u<2) -u(ll;N) inn,

j=! j=! 

2 
d. -Ci) - " I ,,... [0-] . ,...,. IVV - g �-. 't ijcpj - g�i -gm; m��,

j=t P; 

u<il -Vcp; +'t;;cp; = '¥;[0] + gm;P; inf>.,

v<i ) = 0 on an, cpi = 0 on L:n , IIn; = 1t; (IIq = q -
1 
� 

I 
}dx), i = 1,2;
n 

in= (m1 ,m2 f, in= (kl -A)-
1 ], A = {aij }L=1.J = (fiJ2 f,

- L - I L <-i - I f.�. <-i - - . k- y,dx, aij - -. )5 · p 1 ·I;;/ dx,J; --. /�s/ · '¥j
[0 ]-g<I>;[0 ])dx, 

n P; n P; n J=I

-div(ii(i ) ., \il) +, .. .r (i) =, .. 
g in n '(i) = 0 on L(i) i ;· = 1 2 ':, J 11 ':, J JI , ':, J out, , , · 

(6) 

Here, the constant parameters 1:;1 are related in a known manner with the viscosity coefficients  
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and prescribed 
<1>;[0], 'P;[B] are 

boundary 
the 

values 
known 

functions of the vector B=(v(l),v(2); 1Z"1, 1Z"2,'P1,'P2) 

components, expressions of which are given in [9], 
where the existence theorem is proved as well. 

Theorem 1. Let the surface L and vector 
fields U(I), u<2) satisfy the condition 1. Then there 
are such numbers a• > 1 and r • E (0, 1) that if

the matrix N is selected based on the condition 

III -Nllfi2(n) � r2 , r E (0, r *],p1 (p1 ) E C3 (0, oo ),j = 1,2,

1 and the problem parameters are such that - ::; ,2 , 
A 

Re�.2 . .  •;; 2:: a ,z = 1,2,

r E (0, r *] , then the problem (6) has a solution 
0- - (-(!) -(Z) · 

) ;-(}) . . - 1 2 - V ,V , 1Z"1, 1Z"2,'P1,'P2 , m;,':,; , Z,J- ' ' 

such that 0 E vs ,r X xs ,r m- E � ;-�}) E xs ,r where 
, 1 

,':,z ' 
parameters s E (0, 1 ), r E (1, oo) satisfy the conditions 

3 -
s · r > 3, 2s -- < 1. Thus vector 0 belongs to a ball Br

r 
of radius T centered at the zero point of the space 
vs ,r xxs ,r . 

Here, vs ,r, xs ,r refer to spaces
xs ,r = ws ,r (0.) n wl,2(0.) vs ,r = ws+l r (0.) n w2,2(0.)

where W1·P(O.) (I is a non-negative integer, 1 � p < oo)
is a standard space by S.L. Sobolev [24], consisting 
of measurable in 0. functions having generalized 
derivatives in 0. of up to l order inclusively, summed
with an index of power p. For real s E (0,1) , r E (1, oo)
a functional space ws ,r (0.) is obtained by the real
interpolation method [25] between r (0.) and w1 r (0.), 
and consists of measurable functions with a finite norm. 

f -3 (lu(x)-u(y)IJ
r 

llul�s,r cn) = II ull1: cnt I u ls ,r ,n, I u ls ,r ,n
= 

nxn 
Ix-YI

I x-y Is dxdy. 

In general, the space w1+s ,r (0.), 0 < s < 1, 1 ::; r < oo, l 2:: 0
is an integer and is defined as the space of measurable 
functions with a finite norm. 

llullw1+s,r(n) = liullw1,r(O.) + �0
11D

aullws ,r(Q) ·

wi,r (0.), 0::; s::; 1 refers to a closed subspace 
ws ,r (� 3) consisting of all functions U E ws ,r (� 3) 

vanishing outside the domain Q. For the purpose 
of O < s <) 1 < r < oo , let w;,r (0.) denote the
interpolation space [W

0
o, r (0.) wJ, r (O.)]s r with the norm

determined by the real interpolation. 
1 1 Let us assume that O � s ::; 1, 1 < r < oo , - +- = 1 . Let 
r r' 

w-s ,r (0.) denote completion of r (0.) in the norm

SU� f U ·Vdx. 
uEWo'' (Q) Q 

llul�
0,

,,(0.) = 1

As is known from [7], space w-s ,r (0.) for O < s < 1,
1 < r < oo is topologically and algebraically isomorphic
to Banach space (w;,r ' (0.)), dual to Wt·'' (0.), and
can be identified with it. 
For any O::; s :s;; 1 , 1 < r < oo , Banach space w-s ,r (0.)

is completion of L' (0.) in the norm.

llvllw-s,r cn) = 11.Cvl�ws,r' (O.)) ',

where .Cv(u) =< v,u >= f v(x) ·u(x)dx is a continuous
n

functional in the space ws ,r (0.), continuously
embedded in r' (0.). As is known [7] that if n is a 
bounded domain in �.3 with a boundary of class C 1 

, 

then w-s ,r (0.) is algebraically and topologically
isomorphic to the dual space cws ,r ' (O.))'' and can be
identified with it. In addition, let us introduce functional 
spaces 

us ,r = wH r (Q) X ws ,r (Q) X �, vs ,r = ws+l r (Q) X ws ,r (Q) X �, 

zs ,r = ws-l r (0.) n L2 (0.)

£s ,r = zs ,r xxs ,r x�, :Fs ,r = vs ,r xxs ,r x�,

Membership of the vector magnitude F of the direct 
product of spaces W1 x W2 x W3 is to be understood in
the sense that F is made up of three components (scalar 
or vector), separated by semicolon F = (F;;F2;F3 ) 

and at the same time Fi E Wi., F2 E W2 , F3 E W3 . If
Wi = W2 = W3 = W , write F E W and separate the
vector components by comma. 

DOMAIN DEPENDENCE OF SOLUTIONS

The most important stage of the shape optimization 
study is to prove the uniqueness of solution of the 

problem (6) and differentiability of its solution 
with reference to the parameter 8. For this purpose 
it is necessary to study dependence of these solutions 
on the matrix N completely determined by the flow 
range deformation. 

At this stage, the matrix N structure is irrelevant 
and therefore the results obtained below are valid 
for an arbitrary smooth matrix-valued function 
N(x), x En.

1. The problem for differences. For difference
qo-q1,

- _ 
c
-< 1 ) -<2). i i i i ,,..c1) ,,..(1) ,,..(2) ,,..c2). i i) . _ 0 1 q; - V; ,v; , 1Z"1, 1Z"2,'P1,'P2,..,1; ,..,2; ,':,J; ,':>2; , m

1 , m
2 ,z - , , 
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of solutions to the problem ( 6) obtained according to Theorem 1 and corresponding to different matrices NO and N 1 , let 
us introduce the following notations 

-(}) - -(}) -(j) -

0 I - 0 I - 0 I ,= (k ) - r(k ) r(k) k . -1 2 w -v0 -v1 , mj -1rj-1rj, lf/j -<pj-<pj, nj -mj-mj,':,j -.,j0 -.,j1 , ,J- , . 

From (6), it follows that the vector function 
- - _ c-c1) -(2). ,=(!) ,=(l) ;:(2) ,=(2). 

) qo -qi - w , w ,OJi,Ci.12,lf/1,lf/2,.,1 ,.,2 ,.,1 ,<:,2 ,n1,n2 
is the solution to the following linear problem 

2 2 

ljijAwUl -V m; = ljijA0 (wUl)+ReC(lf/;, w<i ))+ V; +(- ) l ;(f, +S
0 (wC2l - wC 1l)

j=l j=l 

2 2 

divw(i) = .L
Pijlf/j + Dijmj + r;n; + O;d, 

j=l j=l 
2 2 

iif) · v If/; + r; If/; = -w(i) · v <pf + �)ijlf/ j + Dijmj + Y;n; + 8;d, 
j=l j=l 

- div(ii(i) ;:Ci))+ r. ;:'i ) = div(w(i ) rU)) + r d i n Q 0 ':,1 I ':,1 ':, 1[ I} ' 

-Ul - 0 n - 0 �; - II ;:Ul - 0 �; 
w - on��. If/; - on£..;, ' mi - m;, ':,j - on ,:_,out' 

These equations use the following notations 
Ak (w) = A(w;Nk ), Bk (p,ii,w) = B(p,ii, w;Nk) , Sk (w) = S(w;Nk) ,k = 0,1, 

.c( -(i)
) - B ( -(i) -(i)

) 
B ( I -(i) -(i)) 

B ( I -(i) -(i)
) If/;, w - o lf/;,uo ,uo + o P; , w ,uo + o P; ,u1 , w , 

f, = S0 (iif2l -ui°l)-S1(iif2l -iii °\
2 

V - ""'" (A (-(})) A c-(j))) R (s ( l -(i) -(i)) B ( l -(i) -(i))) ;-L.J-"ij ou1 - 1u1 + e 0P; ,U1 ,u1 - 1 P; ,u1 ,u1 , 
j=I 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Symbols x?k refer to elements of the matrix on solutions q0 and q1 and are considered as known 

(k(No )I_ A(No, Bo) -
1 

. Coefficients /3 0 
functions. Expressions for these coefficients are very 

au , U• Y;' ; ' bulky, whereby they are not stated here. Let us point out
a;j,/Jj ,Y;.<5;, ii;j,pi j•Yu ,8;, i ,j = 1, 2 , in the right- only their estimates that will be required in the future. 
hand members of equations (9), (10) and (13) depend Under the conditions of Theorem 1, the inequalities 

{11aijllxs,r , i * J, 11/Jj l�s,r ,ll8;11xs,r ,llaullxs,r .11/J;)l ,1,s,r ,ll8;1�s,r }� er, 

{�aijll xs,r , 11.8; l�s,r ,ll�ul �s,r
1
ll5;ll

�
s,� 1� er,

lll aullxs,nllr;llxs,nllr;llxs,r f�e, 1 ,J 1, 2 , 

are valid. Parameter r indicates the radius of a ball in 
the space vs,r x xs,r , to which solutions 0o and iA 
belong. c denotes a constant depending only on the 

domain n, vector fields (jO) Jj<2) and parameters r, s,
r11, r22. Subsequently dependence of a particular 
constant on n, U (I) 

, U <2) , r 1 , r 2 will be referred to as 
the dependence on the problem data. 

2. Conjugate problem. The feature of the problem 
(8)-(13) for the difference q0 - q1 is that the known 
results [7] on transport equations are not applicable 
to equations (10), because the summand w<i) · V <p; 

(14) 
does not satisfy the required smoothness conditions 
( is neither smooth nor bounded). However, the existence 
theorem implies that summands w<i ) · V <p; belong to 
space w

s

-l,
r 

(Q) , dual to wi-
s

,
r

' (Q) , and therefore it
is possible to treat the difference iio - q1 as a very weak 
solution to the problem (8)-(13). In this regard, let us 
formulate the conjugate problem as follows. 

For given vector fields fiCi) , scalar fields 
G;,F;,Mli ,M2; and constants s ;,i = 1, 2 , it is necessary 
to find the vector fields wfl, scalar fields m;, If/;,<;;(}) * 
and constants n;, i ,j = 1, 2 , such that 

2 2

u ij (Aw!j) -v m;-Ao (w!j)))- Reri;(wfl)+ (- )l i+l So(wf) - w!'l)+ If/;• V <pf+ Z:sW · V <;Ji)*= fi(i ) i nn, (15) 
j=l j=I 
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-(i)ni, (i)* i, (i)* _ - '"" * o M · r. 
uo v'-:iJ +'t;;'-:iJ - YiJ L .. PkXki + Ji lnH, 

k=l 

-o) _ 8,.... • _ ; "o)• _ ; • _ • .. _ w. -Oon ><,'I'; -OonL0u1 ,-,1 -OonL;n,IIw; -W;,l,J-1,2.

Linear operators 'H; and M; are defined by the following formulas 

'H;(h) = p}V(N·,;1u&i))N·,;11z -(Nr)-1 div(pJuti) ® (Nr;1h)), 

M;(h) = (ii&i) V(No1u&0) · No1 h,i = 1,2.

(16) 

(17) 

(18) 

(19) 

(20) 

The further content of this section is devoted to 
proving existence and uniqueness of strong and weak 
solutions of the conjugate problem (15)-(20). These 
results enable us to derive estimates of norms for the 

h-(i) =(w-(i).m• .,,• ]"(i)* f"(i)*.n*)EVs ,r sat1's•l:.•1'ng the* , i ,.,, i , ':,] , ':>2 , i 'J.Y 
inequality 

(21) 

d'ffi -(i) ]"(}) 1 erences w , m; , If/;,<:,; ,n; . If we apply a more restrictive condition to the 
Theorem 2. Let the conditions of the existence 

theorem are satisfied and parameters s, r are such that 
1 

J J E [,s ,r 

right-hand member , namely , the solution 

- < s < 1, (1-s )r > 3. Then there are numbers c, a-c 2 
h belongs to the class ;:

s ,r 

and at the same time the 
following inequality is valid. 

and re depending on the objective and parameters 
s,r such that if min{r1 ,r2 }>a-c 

and O<-r�r
c
,

11h11 sr �cllJil sr · r , '£ , 

Teorem 2 proof scheme 

(22) 

then for every vector junction J = (j(l) ,J<2)), 

j<i) = (if(i);G;,F';,M!i,M2
;;s;) E us ,r , the problem

(15)-(20) has a unique solution h=(h(l),1z<2>), 

Equations (15)-(19) of the conjugate problem can be 
represented in a symbolic form 

A[h.]-B[h.]=F,h. =(1z!1l,1zPl} h}i) =(iWl;m;,lf/;,;?l*,;fl*;n;) 

where the integral-differential operators A and B are determined by the formulas 

A;[h.] = 

- - -
A[h.] = (A1 [h.],A2 [h.]), 

- - -

B[h.] = (B1 [h.],B2 [h.]), (23)
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2 

Iµ jiAo(wi1)) + ReH;(wYl ) + (-li S0(w£2l -w£1l)-\JI; · V(j)}
j=I 

II �Jlo'V; + t.(n; xtil;, + µ•� iro;)] 

2 

B;[h.] = ReM;(w£il ) +\JI ;divii6i) + I[akw; + nZxZa1J 
k=l 

0 

Let us consider the following boundary value problem by connecting to the system of equations 
A[h.] = F (24) 

the boundary conditions 
win= 0 on an, \JI;•= 0 on L�u" s?J• = 0, s?· = 0 on L;", IIro;• = ro;',i = 1,2. (25) 

It is easy to see that for each right-hand member 
- - -(I) -(2) -(i) = -(i). F - (F ,F ) , F (H ,G;,F;,Mli ,M2 ;,s;) of

the space us,r , the boundary value problem (24), (25) is 
divided into several independent linear boundary value 
problems, namely, functions 1;;°*, i, j = l ,2, are defined
independently as solutions to the following problem for 
transport equation 
-<iln� (i)* � ut - M . n � (i)* -

0 �; . . - 1 2 Uo Y'-J
j 

+Tihj - ji ln:,t.,'-oj - On,:,.in'l,j - ' . 

The procedure for building solution to the problem (24), 
(25) ends with finding the constants n; according to the
formulas 

n; = f(; Iµ1;co; +Y;\JI ;] dx+s;,i = 1,2.
n � ;=1 

On the basis of known results on transport equations and 
linear Stokes-type problem [7,26,9] we can assert the 
existence of the constants c and CJ" c , depending on the 
problem data n, u<1l, u<2l and parameters r, s, such
that if min{r1 , r2 } � CJ"c, then the problem (24), (25)
is uniquely solvable in spaces vs,r and :Fs,r and the 
following inequality is valid 

llh..l�s,r � cllFlls,r , llh..l�s,r � cllFl�s,r · (26)

The foregoing can be interpreted in the form of existence 
of (inverse) bounded linear operator A-1 : us,r � vs,r 

( A-1 : £s,r � :Fs,r ) which assigns a unique solution 
- I -h. = £ [F] to the boundary value problem (24), (25)

to the element FE us,r ( FE e,r ). 
Let us now tum to the integral-differential operator 

B given by the formulas (23), and note the following 
properties. 

Lemma 1. Let us assume that conditions of Theorem 

1 and _!_ < s < 1, (1-s )r > 3 are satisfied. Then B is 
2 

a bounded linear operator from vs,r to us,r and from 
:Fs,r to £s,r , and the following inequalities are valid 

After this, the components w£i> , m;, i = 1,2, are found
as solutions to the Stokes-type problems, i.e. 

2 2 

Iµ1 ;(Awi1l -Vro ;) = ffUl -Ie;;?. VI;;°* inn,
J-l J-l 

divii,iil = IIG; in 0, 
wiil = 0 on 80, IIm;* = m;*, i = 1,2.

. The next step is definition of components If/; as the 
solution to the boundary value problem 

IIBhlls,r � C • �lhl�s,n

11Bhl1£s,r � C • �lhllFs,r ·

(27) 

(28) 

Here, the constant c depends only on n, vector fields 
-{j(ll ,0(2) and parameters r, s. 

Now we can complete the proof of existence and 
uniqueness of the conjugate problem solution. 

Let us assume that conditions of Theorem 2 are 
satisfied. The conjugate problem (15)-(20) can be 
written as the operator equation 

(J-A-1B)h =£1f

Due to (26), (27) linear operators A-1 : us,r � vs,r and 
A-1B: vs,r � vs,r are bounded, moreover

11£'BII s ') � cv ·r, (29) 
L(V' 

where the constant cv depends only on the problem
data and parameters r, s . On the basis of the conditions 
in Theorem 1, parameter r satisfies the conditions 
0 < r � r • (r1 , r2 ) . Let us choose the constant 'c such 
that the inequalities are valid 

O<,c �.·(r1 •'2 ) rc ·Cv �q<l 
From (29) it follows that the norm IIA-1 BIi s r) for

L(V' 

, E (O;,c l is separated from the unity, and on the basis
of the well-known theorem, the operator (I -A-1 B)-1 

exists and is bounded 

ll(/-£
1B)-1II �-1-L(vs,r) 1-q 
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So for these values r and any J E us ,r the conjugate 
problem (15)-(20) has a unique solution h E vs ,r and 
the inequality (2 1) is valid. 

Suppose now that the right-hand member J of 
the problem (15)-(20) belongs to space Es ,r . As the 
operator A- 1 of the solution to problem (24), (25) is a 
bounded linear operator from Es ,r to Fs ,r , then due to 
estimates (26), (2 8), we have 

ll£1
BII sr)�Cp ·T·1-(:F ' 

If the parameter r is subordinate to the condition 
r E (O;rc ], where 

O<rc ::,:;•*(•1 ,•2 ) •c ·Cp ::,;q<1, 

-(1 -(1 where f' = (H' ;G;,F;,MJi ,M2;;s;), z = 1,2, are 
arbitrary functions of ws-l r (0) X ws ,r 

(0) X JR, and 
-(i). • • (i)* (i)*. • . -(w. ,OJ; ,lf/; ,.;'1 ,;2 ,n; ),z-1,2, is the relevant 

solution to the conjugate problem (15)-(20). 
Proof. Since the set L' (0) X w 1

,
r (0) X JR 

is contained in Es ,r and is dense in 
us ,r = ws-l,r (0) X ws ,r 

(0) X JR , then for any element 
f- = (f-cl),f-(2)) , f-(i ) -(H-(i).G F M M ·s )- , ;, ;, u, 2;, i 

- -(!) -(2) of space us ,r ' there is a sequence fn = (fn , fn ) '

l
n 
-+ J n us ,r, n-+ 00. (3 1) 

Therefore let us begin with prove of the identity 
(30) for a vector function J from a space
C(O)xw1r (O)xJR. In this case, the relevant

then, similar to the previous case we obtain that under 
condition J E t;s ,r solution h to the problem (15)-(20) 
belongs to the class Fs ,r and the estimate (2 2) is valid. 
Theorem 2 is proved. 

3.Estimatesofdifferences.For s e (0,1) , re (1,oo)
let (.,. ) 1 and (.,. ) 0 denote the duality relationship 
between pairs of spaces ws-J r (0) , wts ,r' (0) and 
w-s ,r' (0) , ws ,r (0) , respectively. 

Lemma 2. Let us assume that conditions of Theorem 
2 are satisfied. Then vector fields w(J), j = 1,2, scalar 
fields OJ

j
, IJlj, c;)il,i, j=l,2, and constants n

1
,J=l,2, 

defined according to the formulas (7) belong to spaces 
Wci-s ,r' (0), w-s ,r' (0), JR and satisfy the identity

(30) 

vs ,r 
X xs ,r 

X JR= Fs ,r (in particular, this means that 
vector fields wf) have continuous first-order derivatives 
and square summable second-order derivatives, and 
scalar functions OJ;,IJl;,c;?)*,;f)* are continuous and 
have square summable first-order derivatives). Due to 
Theorem 1 we can assert that w(i) v(i) ii,(i) E vs ,r 

' ' k ' k ' 

;:Cil k k k ;-(i) xs ,r . . -1 2 k -0 1 OJ;,IJl;,':,
j 

,P; ,1r; ,(f); ,':, 
jk E ,l,J - ' ' - ' . 

The continuity of embeddings vs ,r in C 1 (0) 
provides continuous differentiability in O vector 
fields w(i) 'vii)' ufl and, of course, their membership 
of W2

•
2 (0) . Continuity of embedding xs ,r in C(O) 

implies continuity of scalar functions OJ;, If/;, c;J°, 
k k k ;-(i) b l . h P; , 1r; , (f); , ':> 

jk , e ongmg to t e same spaces 
W 1

'
2 (0) . This implies that equations (8)-(1 1), (1 3) are 

satisfied in the strong sense. Multiplying these equations 
b th 1 t. 

-(i) • • ;:(i)* ;:(i)* • · -1 2 t y e so u10n w. ,OJ; ,lf/; ,':> i ,':>2 
,n; , z- , ,  o 

the conjugate problem (15)-(20), corresponding to the 
solution (lv!i ),OJ;,IJl;,c;ti )*,;i

;)•,n;),i=l,2, to the element ]eLr (O)xW1r (O)xJR, and integrating by 
conjugate problem (15)-(20) belongs to the class parts, we obtain the identity 

�[sr- (i) - (i) (i) (i) \ 
]-f:t 

0

\t_V H +co;G;+'l';F;+� 1 Mli +�2 M2;Jdx+n;s; -

_ �s[-(i) ; (� . � (i)· • o- • )]-L.i w. ('D;+(-1) E)+d 8;'11; + L.i('C ji �j +n;x !i8j +µ/>/o; ) dx. 
1=1 n ;=1 

(3 2) 

Let us note that vector functions (if Ci)· OJ. If/· ;:Ci) ;:Ci)) , P p':,l ,1:,2 

and (w(i );G;,F;,MJi,M2
;) belong to dual spaces 

( r > 3, 1 < r' = _r_ < r ) imply that these functions
r -l 

ws-1,r (0) X w-s ,r' (0) and Wci-s ,r' (0) X ws ,r (0) ' 
respectively. Indeed, iJU) E ws-l,r (0) 
because fIU) EC (0) , and there is a limited 
embedding C (0) in ws-i ,r (0) . Scalar fields 

(i) (i) OJ;, If/;, qi , .;'z are elements ws ,r (0) , and 

embeddings ws ,r 
(0) CC (0) C w-s ,r' (0)

belong to w-s ,r' (0) . 
Further, the vector field w(i) E vs ,r and hence 

w<i) e C 1 (0) . In addition wCi) vanishes in 80 . Thus, 
it is clear that w(i ) E w�·r' (0) . Since wt-s ,r' (Q) is 

the interpolation space [L'\n) wf' (O)Ji-s,r' and
w�·r' (Q) CL'' (0)' then w�·r' (Q) C Wci-s ,r' (Q) . So, 

48



Science Evolution, 2016, vol. 1, no. 2 

we have w(i) E wt-s , r ' (0). On the other hand elements identity (30) of Lemma 2 is proved for vector functions 

G;,F;,M!i ,M2; belong to ws, r(O). In view of the (fI(i>;G;,F;,M!i ,M2;;s;) from a narrower functional
above, integrals in the left-hand member of the equality space r (O) x wl r (O)x JR, i.e, we may write (32) can be written in terms of duality forms and thus, the

2 

"f-ui-ui (iJ oi 
}­L.it.<Hn ,w )1 +(ro;, G;n )o+('1';,F';n )o+(s1 , Mi;n )o+(s 2 ,M2;n )o+n;s;n -

i=l 

- � ({-(i) i [� • � (i)* * o- * ]} - L.i J Wn * (D; + (-1) £) + d 0;'1' in + L.i('C jiSjn + n;n XijO j + µij8 1ro;n ) dx,
z =ln 1 =! 

(33) 

h h-cn _ (-(i). * * ;:Ci)* ;:(i)*. • ) . _ l 2 . (34) we obtain the identity(30) stated in Lemma 2.W ere n - wn* , m;, ,1/1;, •'=>In •'=>2n , n;, , l - , , lS L . d emma 2 1s prove . 
the solution to the problem (15)-(20), corresponding to Identity (30) proved in Lemma 2 means that the 
the "right-hand member" fn(i) , i = 1,2 · From (31 ), due to difference ij0 - ij1 is a very weak solution to the linear 
Theorem 2, we have that problem (8)-(13). 

hn = (hp> ,h�2)
) 

� h = (h(l) ,h(2)
) 

n vs, r , n � 00• (34) Lemma 3. Let the conditions of Lemma 2 are 
Passing to the limit as n � oo in (33), due to (31 ), satisfied. Then the following inequality is valid 

t(11wCi> 1�
6
-s,r' + llw ;llw-s ,r ' + llm;llw-s,r' + lls?> llw-s,r' + llsfllw-s,r' +In; 1) � 

� cGldlk1(n) + IID1 lk1(n) + IID2 IIL'(n) + ll£lk1(n)) 

(35) 

where the constant c depends on the problem data and 
parameters r, s . 

Proof. Turning to the equality (30), we note 

in modulus by a constant depending only on the 
problem data and r,s (see (14)), then the right­
hand member of this identitycan be estimated by 

that since the coefficients O;, O;, O; are bounded a value 

I�lwY> ltcnJ + II If ;ltcnJ + llm;ltcnJ + ll;?l *lhn) + ll;J
il *lbnJ +In; i)·{lldlk'(n) + IID1 IIL'(n) + IID2 lk'(n) + 11£1k'(n)). c (36)

i=l 

In addition, due to embedding theorem and estimate (21) we have 
2 

"
( 

(') • • (')* (')* ·
) 

- -L.i llw.' ltcn) + Ill/I; Ileen) + llm; ltcn) + ll,;1' ltcn) + ll,;2' ltcn) +In; I � cllh l�s,r � cll.f1�s,r 
i=l 

From (36) and (37) we obtain 
2 2 

(37) 

"{ - (i) -(i) (i) (i) 
} "� ) 

-L.i (H , w ), +(m;, G;)o +(f//;,F';)o +(,;1 ,Mu)o +(,;2 ,M2;)0 +n;s; � c L.i�ldlk'(n) +IID;IIL'(n) +11£11L'(n) llf1ls ,r(38)
i=l i=l 

prove the drag functional differentiability. 
This section is devoted to their study. Solution 

ij = (v(I), v(2) ;n'i ,Jr2 ,</J1 ,</J2 ,sil) ,;J'l ,c;pi ,;fl ;ml ,m2 )

to the problem (6) is a function of spatial variable 
x = (x1,x2,x3 ) E O and parameter & • Let us assume that

q(c) = ( (x � q(x,& )) ) and consider q (and, of course, 

components ij ) as a function of & with values in the 

The inequality (38) obviously implies the estimate (35). 
Lemma 3 is proved. 

The inequality (35) implies, firstly, the uniqueness of 
solution to the problem (6). In addition, (35) implies that 
the mapping associating the matrix-valued function N 
with solution q to the inhomogeneous boundary value 
problem (6) is a Lipschitz solution in a weak norm. 

MATERIAL DERIVATIVES

So-called material derivatives of solution 
to the problem (6) is an important tool to space of functions of x.

Material derivative ij'(O) = (w< 1> , w<2> ;mi, m2 ,f//1 ,f//2 ,,;p> , ,;J1> ,.g1
<2> ,,;?\n1 ,n2 ) of , solution 

ij(c )= (v<1l (c \ v<
2> (c },1r1 (c ),1r2 (c ),'A (c ), rp2 (c \;p>(c ),i;;-J

I> (c ),;f> (c ),;f> (c );m1 {c ),m2 (c )) to the problem (6) with
t: = 0 is defined as follows:

w(J) = lim w(j) 6 m. = lim m. ff/. = lim f//. ;(;) = lim ;Vl n. = limn. . . l 2 &-+0 , J &-+0 ]Ii , 
J &-+0 JG , J &-+0 JG ' J &-+0 JG l, j = ' •

will =-c-1 (vU> (o)- vU> (c)} m
16 =-c-1 (1ri0)-1ric)} f//J6 =-c-1 (rpiO)-rpic)} 

,;;� = -t:-
1{s;o(o)-;y>(t:)} n16 = -t:-1 (mio)-mit:)} i,J = 1,2,

provided that the limits in (39) exist in some sense. 

(39) 
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Equations for material derivatives can be easily 
obtained by formal use of 0 = B(s) and N = N(s) in 
equations ( 6) and differentiating results according to 

s at zero. This formal procedure gives the following 
system of equations and boundary conditions for 
material derivatives. 

2

LµiiAw(j) -y'(J)i = ,c*(\j/;, w(i))+ v; +(-l) i �* + a�(2)_ w(I) ))inn,
j=l 

2 2 

-(i) l.o) n - -(i) 
n l.o) """·

A . "'"'A* A. [*d * . r, u � · v \jl i +-c u\lf; --w · v cpi� + L.°'ii\lf i + L,l'iiro i +Y; n; +u; m H, 

j=l j=I 

-div�(i)(O)l;?�H;;/;y) = div�(i)s;°(o))H }id * in 0,

-u) - o an - o � i - rr ): (i) - o � i w - on ' \jl;- onL.,in• ffi;- ffi;, ":,j - onL.,out, 

_ � 0 f[-· * �(-· -. -· (k))� . .  _ n; -
i:t_

Xik n 
8k d + 

i::_
\Uk}\lf 1 + PkJroJ + ykJl;J 

J
dx,1,1 -1,2.

These equations use the following notations 
2 

v; = -Rep;(o)�Cil(o}v(n»iil(o))+ n»1r uul(o} vuui (o) )+ Lµldiv('ll'vuUl(o»+ w1r AuUl(o)+A(n»uul(o»), 
j=I 

£· (\If;, we
;
�= Re(\lf;uc

;
J (o)-vuu) (o)+ P; (o)wCi) . vuui (o) + P;uCi) (o)-vwu�;

£* =a11'�( 2)(0)-uO)(o»; d * = divT; H»=divTI-DT; 'll'=divTI-Df-(nrY. 

(40) 

(41) 

C fii • • • • • 
A . A . A. A. -· -. -· -. 

• h • h h d b f • (40) d doe c1ents a
ii
,/J

u
,r; ,8; , a

iJ
,/J

u
,r; ,8; , a

u
,/J

iJ
,r

iJ 
,8; ,i,j = 1,2, mt e ng t- an mem ers o equations epen 

on solution to the problem ( 6), corresponding to c = 0 . 
To prove existence of a very weak solution of the problem ( 40)-( 41) let us introduce the conjugate problem in the 

following formulation: for given vector fields fl(i), scalar fields G;,F;,Mli,M2; and constants s;, i = 1,2, it is necessary 

to find vector fields wYl, scalar fields w;, If/;, <;;U) * constants n;, i, j = 1,2, such that 
2 2 

�>/AwYl -vro;)-ReH;(win)+ (-1f+1 a(wfl -wi'� +-\jl i. · Vcp;(o)+ �);;)°(O)· Vl;y>" = iI(i) in o., 
j-1 j-1 

d. 1 ·-u)t.o\"\ • - R M·f-ui\ �[A· · �1 • 0 -· • ·)� F · " - lV\'lf; U � :JJ+'t ;;'If; - e i \W• ) + ';:1. Uk/I\+ f:t.\nkxkj aJi + µkja Jiffik j + i ln :.l., 

,:;Ul (o)\7�yi
· 

+'t;;�yi
·

= r;In:xzi +Mji inn,
k-1 

-Ul -0 "'"' * -0 ._,; ): (i)* -0 ._,; II • - * . . -1 2 w. - onu:,", \If;- On£..0ur, '-JJ - On£..;n, ro ;-ro ;,l,J-,.

Linear operators 1{; and M; are defined by the following formulas 

H;(h)= p;(o)v(uul(o))h-div{r';(o)uUl(o) @h), M;(h)=�Cil(o)vu<il(o».h ,i = 1,2. 
Well-posedness of the conjugate problem (42) statement is the result of the following lemma. 

(42) 

(43) 

Lemma 4. Let us assume that cond itions of Theorem 2 are satisfied. Then for each vector function 

J = (j(I) ,JC2)), JU)= (ifCi);G;,F;,M!i,M2 ; ;s;) E us ,r, the problem (42) has a unique solution h. = (hJ1 l,,;,.(2l), 
Z:(i) = c-(i). • • ;:(i)* ;:(i)*. *) vs ,r ''* W, , OJ; , If/; , ':,] , <:,z , n; E . 

Proof. Problem (42) is a special case ofthe problem ( 15)-( 2 0), with N0 = I and g 0 = 1, q; = q(O) uJ1) = u!J) +v(Jl(o ),
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p� = p; +cp)o), �Jl = ,yi(o) i = o,1;k,J =1,2. 
Therefore, the lemma is a direct consequence of 
Theorem 2. 

Linear equations ( 40) are obtained by formal 
differentiation, and the fact that the limits 
-(i) ;e(i) · · - 1 2 . (39) 11 . d w ,m;,lf/;,':!j ,n;,Z,J - , m rea y exist an 

satisfy ( 40), is not obvious. Further it will be shown that 
they exist in a weak sense, are defined as the elements 
of the space wJ-s ,r'(n)xw-s ,r'(n)xIR and defined as 
a very weak solution of the linear problem ( 40). 

The proof of these facts is preceded by a brief 
comment of a technical nature. 

Lemma 5. There are numbers &1 > 0 and c, c1 , 

depending on llfllc2(n) such that for any & E [O;c1 ], 

the following representations exist 
N(ct =l±cIIll+c2IDi± ,9(c)±1 =l±cdivT+c2g± (44)

Science Evolution, 2016, vol. 1, no. 2 

where J/JJ = divTI-DT and ll]]])
± llc2(n(119± 11::;;c, and

deviations N(c t - I, g(c )±1 -1 satisfy the inequality 

IIN(c}11 

-1llc2(n) +ll9(c}11

-illc2(n)::;; ci& 

The proof of Lemma 5 is, for example, in [7]. 
Theorem 3. Let the conditions of Theorem 2 and 
& E [O; c.] are satisfied, where &, = min{c1

1-r2
, &1} and 

the constants c1 and &1 are chosen in accordance 
with Lemma 5. Then there are such h = (h(l) ,1z<2l)

hQ) = (pl.(j). \If.): (1)): (2). n.)Ew 1-s,r 'fn'\ xw-s,r 'ln'xIR 
� ' Z''f' z,":>1 ,":l1 ' l O � ") � '.J 

that wO) � w(i) weakly B 
w l-s,r ' 1n' i = 12 

E O � '.J, ' '

(m;
8
,lf/;8

,<;;�),c;;�))�(m; ,If/; ,c;/1l,,;/2l) weakly 

in w-s,r ' (n), i = 1,2, n;8 � n; a IR at c � 0. In 
addition,forany (H(

;
); G;,F;,M1

;,M2;;e; )EU s,r 
,i = 1,2, 

the identity is valid 

(45) 

Here h. = (£(1 ),J;.(2)} ,J;) = (w!i ); m; ,If/; ,,;?l* ,,;ii)• ;n;) E vs,r is the solution to problem (42) defined in Lemma 4; v;,
£* and d* are defined by the folrmulas (41).

We confine ourselves to a short scheme of 
proof of Theorem 3. Establishing the boundedness 
of sequence of functions h = (1z(I) 1z<2)) 6 6 ' & ' 

such that wii ) � w<i ) weakly m wJ-s,r' (n),

(m;c,lf/;8, <;;�), <;;�) )� (m; ,If/;, qpl, ,;/2l) weakly

in w-s,r' (n) , n;8 � n; in IR as c � 0. On

W J-s,r' (n)x w-s,r' (n)x IR and passing if necessary to the other hand, for arbitrary ] = {7( 1l,J(2)} 
a subsequence, we obtain existence of vector functions -(;) (-u) ) s Ir( ) s '( ) f = H ;G;,F;,Mli ,M2;;s; eW - Q xW' Q xJR 
{WQ).(j). \If. i:_(1) i:(2). n.) EW 1-s,r ' ln)xw-s,r ' ln'xIR 
� , P't' "'"'' ''"'' , , o \: \: J be vahd 

�{; -(i) -(i)) ( ) /, ) ( (i) ) ( (i) ) }-
L... \H ,wE 1+ ro;E,Gi o+\\Jf;E,F; o+ �IE ,Mli o+ �2 E,M2; o+n;E si -
i=l 

- -; t. {f 12 (v,(, )+ (- 1r E(,»+d(e) ( 6,(&)'11:C + t�/, Jr
+ n;, x,i1 (e ) + µ,B;(e)ro;.)},} 

(46) 

where 
is the solution to problem the conjugate to 
the problem for the function h& 

= c1zl1l,1zl2l) ,

h�
;) = (w�l;m;8

,lf/;8
,<;;�),c;;�\n;J Since space

Further, by 

of sequence 

setting 

of 

a weak convergence 

solutions lz. = c£(!) 1z.C2 h 
E E ' E., ), 

W ts ,r ' (n )x w-s ,r ' (n )x IR is dual to space
w s-1,'(n)xws ,,(n)xIR, then passing to the limit as 
& � 0 , we obtain 

(47) 

problem in space ws+1,r (n)x W5 ·'(n)x IR to the solution

h- = (h-(1) h-(2 )) �(;) -(-(i). * * ;e(i)* ;e(i)*. *) f• • , • , "* - w. , m; , If/; , '='I , '='2 , n; , o 
the problem ( 42) and considering the compactness of 
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embedding ws+i r (n)xws ,r (n)xIB. m c(n)xIB. we 

obtain that h,
6 
�h.h c(n)xIB.,i=l,2. 

Properties of coefficients of equations for difference 

(48) 

Equations (46)-(48) prove the identity(45). 
Thus it is proved that every weak limit h = (h< 1 l "ii<2l) h(i) = (w<il · OJ. If/· J:(t ) J:(2

). n.) of the sequence' ' ' l ' l ,4=,, ,1:,, ' l ' 

- - -(!) -(2) h-(;) - (-(i). ,t:(l) ,t:(2). ) . fi h "d . (4 ) . d h h
6 

- (he , he ), 
e 

- we 
,mie ,lf/ie

'"'is ,':,ie 
,nie 

sat1s es t e 1 entity 5 .  It 1s necessary to emonstrate t at 
the sequence has a unique weak limit point, and hence converges weakly to this point. Let us assume that there are 

(w<i ) ;m;,lf/j ,igpl,ig/2\ni), i = 1,2, and (w·<i ) ;m;,lf/;,ig;<l),ig;(2l;n;), i = 1,2, of wt-s ,,'(n)xw-s ,,'(n)xIB. that satisfy 

(45). Then the following identity is valid for all (fi<il ,Gj ,F';,Mu ,M 
2;,s;}e w s-l, r (n)x ws ,r (n)x IB.,i = 1,2, 

-(i) -(i ) -,(i) , , (i) ,(i ) (i ) ,(i ) , -
2{ 

} L {H ,w -w )1 
+(co;-coi ,Gi)0 +('l';-'l' i ,F;)0 +(�1 -�1 ,Mu \ +(�2 -�2 ,M2i \ +(n;-n)s; - 0. 

i=l 

Since the space w;-1
·' (n )x ws ,r (n )x IB. is dual to wt-s ,r' (n )x w-s,r' (n )x IB. , this identity implies that 

(W(i ).liJ· "' ,t:(l} ,t:(2)·n.)= (w•(i ) ·m' ,,,, ,t:r(I) J:'(2 )·n') i = 1 2 ' P'f' P':Ji ,':,1 ' l ' P'f' p':,l ,':,z ' l ' ' • 

The following lemma if the consequence of the 
results obtained in the proof of Theorem 3 

Lemma 6. Let us assume that conditions of 
Theorem 2 are satisfied. Then ij(s)�ij(O) in

ws+t,r (n)x ws ·'(n)x IB. as s � 0. 

DRAG FUNCTIONAL DOMAIN DERIVATIVE

Let us assume the conditions of Theorem 3 are satisfied. 
Then each 

(
matrix 

2
N(s) corresponds to a unique solution

o(e)=(v Il( ), < )(6} .1rik),.1r2(6),'PJ.(e),<p (e)) to the

problem (6), 
s
which 

v 
in turn induces the solution

2
2 

i:;<il (s )= u.(i) + v (il (s), p;(e ) = p; + q,;(e ), q;(e )= q; + ff;(e )+ A- P;�;' )+ LfJijmj , i = 1,2 , (49) 
J=l 

to the problem (5). Turning to the unperturbed domain n in the formula (4) for drag functional, we obtain the following 
representation. 

J vS, = J(n, )=-tu. ·(1R•�P;;;V>v(N-1;;Vl )<H ·J[tµ,c-1( NTv{N-1;; (;) )+ 
(50) 

+ v(N-1;;0l)' N -d;,,�Vl)x)-.,I)N'V�<Il)

where 17 is the arbitrary smooth function identically equal to 1 in the neighborhood of the obstacle S and identically 
equal to zero in the neighborhood of the boundary i:. Substituting functions (49) into the expression (50), we obtain: 

2 

J(ne )= z:(uoo ·J/(ne ) +uoo ·J/(nJ) (51) 
i=l 

where 

J/ (ne) = -f ReTtrls)ii(i) (s)v�(st1 u(i) (s))dx
n 

Calculation of the drag and its variations with 
respect to perturbations of S is a problem of practical 
importance, for example, to build a numerical algorithm 
for finding the optimal shape of the obstacle in the flow. 
In this section, an explicit formula for the following 
derivative is obtained 

d (n)[f ]= lim .!.(J(ne )-J(n)) (52) 
s-.0 6 

Let us calculate dJ(n)[f] in terms of material 
derivatives of solutions to the problem (6). The 
corresponding result is given in the following theorem, 
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which is a direct consequence of the Theorem 3. 
Theorem 4. Suppose that all the conditions of

Theorem 3 are satisfied. Then derivative dJ(n)[f] 
defined by the formula (5 2) exists and can be represented
as 

Here, the form Lu is defined by the equality 
2 

L)f)= L(\B;,11P>\ +(m;,A)0 +(\f/;,C;)0), (54)
i=l 

where material derivatives w(i), m;, \V;,i = 1,2, are given
(53) by the Theorem 3, 

B; = (µ1; + µ2).-111U 00 + Rep;(O)�<i)(o). v'TJ) U 00 - Rep;(o)vu <i)(o). U 00TJ, 

A=V11 ·U00
, C; =-RerJ(uCi> (o).vu<il (o».u

00
, 

and Le takes the form 
2 

Le (f)= -Iu ooRe f; (o )�t> (o) · v11)IDu<il (o )] dx +
i=l n 

+ tu.![}, ( v (uu> (o Y+ vG;u> (o ))' -d;v G;w (o ))� )(prf v�dx _

-t,u. it,µ, ( 11 • vG;u, (o ))-v 6,uu> (o Y+{11 • �u, (o ))-v 6,uu> (oYY)- q, (o )11 ') v�dx.

where ]I]) = divT I -DT .
Proof of Theorem 4. Substituting relationships 

2 
-(i)( )- -(i)(o)- -(;) ( )- (o)- ( )- (o)- '°' fl ·-1 2 u e u -81116 , P; & P; -8\f/;6,q;e q; -&m;

6 +&L.J ;1n61,z-,, 
j=l 

in (51), we obtain the difference relationship 

which can be represented as: 

where 
2 

LE ,U = -I ReUOO J11 �;(i:)wf)y7z7(i)(i:)+\j/ iez7(i)(o)vii(i)(i:)+ P;(o)ii(i)(o)vwf)]c1x
i=l n 

-t. u. J[ t. µ,( vwP + v{wj;l)' -d;,4� l)1) )v�dx + t. u. jw ,, + t.�,•. }�dx

(55) 

(56) 

(57) 

(58) 

'¾, =tu. J{ Re>i�,€,)u0l(•)v{i-N€,J-}u0l(, j)]+ [ t,µ,(v{u Ul €,)) + v{uUl(,f-d;v�0l(,))i)-q,(,++

Note that z7 Cil (e ),ii(il (o ), wf) ,i = 1,2 are continuously 
differentiable in n and belong to the class W 2 •2 (n).

In turn, p;(., ),P;(O ),\f/;
6

, q;(e 1q;(O ),m;
6

, i = 1,2 are 
continuous in the domain n and belong to the class 

W1 •2 (n). Thus, taking into account that wf l ,i = 1,2 

vanishon an andequations div(P;(O )· z7 (i)(o ))= O,i = 1,2 
in n are satisfied, we make transformation of the
following integrals. 

J Re P; (o)u <il (o). vwf)11c1x = -JRe P;(o)�i)(o). vTJ)wf)c1x
n n 

Jf {µii
( vw}i) + v�}i�

r 

- div�{1))1) }v11c1x = -f µii 
fv}i).-111dx.

n� � n 

(60) 

Since the function 77 vanishes in the neighborhood of L and is equal to unity in the neighborhood of as , then 
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2 2 

f L 13;knkE VTJ dx = -L 13;knkE f iids = 0. (61)
n k=l k=l as 

2 

LE ,u = L J(siE · 11P) E + O);E · A +\If iE · C;E)dx,
i=l Q 

Taking into account the formulas (60) and (61) of the where 
functional Lc, u from (58), let us equate 

B;E =(µI i + µ2)i11Uoo + Re P;(o)�Cil (o). v11)uCX) -Re p;(s)vii(i) (1}UooTJ•

A= 'v 11 · U 00 , C;s = -Re11ii(;)(o) 'vii(i)(s)U 00 • 

From Lemma 6, (49) and continuity of embeddings converge weakly to w(i) in W 1-s, r ' (n). Thus we
Ws+I, r (O)H C1 (0) and ws, r (O)H C(O) it follows obtain 
that B;. � B; in c(n) as e � 0. In particular, 

f r.) r.) 1 r.) 
B;E ·wf)dx=/B;s,wf)\

I 
�/B;,W(i)\

I
ase�O. (62)

continuity of embedding C\0 H Lr \0 H W s- ,r \0 \ / \ / 

implies that Bic converges to B in w s-1, r (n). On Bue to lemma 6 zi Cil (c)�ii (il (o) in ws+l, r (n) and 
the other hand, due to Theorem 3 the functions wYl hence v7z7Cil (c)� Vii(i) (o) in ws, r (o). Then

C;s = -ReTJii(;)(o)vii(;) (s)U00 � -Re11ii(;)(o)viiV)(o)u00 = C; in w
s, r (n).

Theorem 3 provides a weak convergence of '1/);0 
--+ '1/); 

in w-s, r (n) that results to the relationship 

J\j/;E C;s dx = (\If is ,C;s }o �(\If;, C;)0 as & � 0 .(63)
n 

Finally, we note that AeC 1 (n)cws, r (n) and 

m;. � m; weakly in w-s,r (n), which gives

fm;6 Adx=(m;s ,A\ �(m;,A )oas c�O. (64) 
n 

Combining (62) - (64) we obtain 

L6,u{f)� Lu{f) as e � 0. (65) 

To pass to the limit in the expression for LE ,
e, we note 

that u(il (e) are bounded in c1 (n),and p;(e), q;(e) are

bounded in C ( n) . Substituting representation ( 44) for 

N(e) and g(e) to (59) we obtain 

2 
Ls ,e =O( s)- LU00Re J[P;(s)�V)(s}v11)IDuV) ( s)]dx-

i=I Q 

- tu. f [ t µ,( 11 • v€;V l(, ))-�--Vl( ,M1•17�0l(, ».- 17�0 l (,)))' )-q, {s)II' Jv�d.c +

+ tu. I[tµ,(v �Vl(,))+v�Vl(s))' -div�Vl(,))1) )(Df)' vd< 

As noted above z7 Cil(e)�zi Cil (o) in c1 (n) and

(q;(e),P;(e))�(q;(o),P;(o)) in c(n) . Thus we obtain 

Lc, e
(f )� Le (f) with e � 0 (66)

Letting E --+ 0 into (57) and using relationships (65), 
(66) we arrive to (54). Theorem is proved.

Formulas similar to (53) are widely used to solve
shape optimization problems. Standard gradient scheme 
in the shape optimization is as follows. Let us choose 
an arbitrary compact set S c B as the starting point 
of the iteration process. Then we find the vector field 

f such that dJ(O)[T] < 0 . A set Sc = (1 + d)(s) can
be accepted as the next iteration step. Then we take 
n = n(c) and repeat the calculation. It is hoped that 
after a certain number of steps we will obtain a shape 
close to the optimum. Realization of such a scheme 
requires an efficient method for calculation of the first­
order configuration derivative dJ. However, from the 
standpoint of numerical methods, representation (53) 

can not be a good basis for the calculation. 
Further we designate the problem (6) with 

N = I (unperturbed case) as the state equation, and 
solutions to this problem 0 = (v <1) , v <2) ,1T1 ,1T2 ,'P1 ,'P2 ),

( = (spl, .;-Jil, .;;pl, d2l) and in= (m1 , m2 ) as the state
variables. State variables completely describe the flow 
in the unperturbed domain Q , and do not depend on the 
vector field T . Theorem 4 shows that the derivative of 
functional dJ(O c ) consists of two parts: Lu and Le . 
Geometric part Le is simply the integral of a linear 
form of T over Q . The coefficients of this form are 
defined by state variables. Hence, it is not difficult to 
calculate Le for all smooth T . The dynamic part Lu , in 
contrast, depends on T implicitly. To calculate Lu , it is 
necessary to find a very weak solution of the linearized 
problem, and then to apply this solution to (6). A very 
weak solution is given by Theorem 3 and depends 
on T implicitly. If you need to find Lu for another 
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vector field f , you have to repeat all calculations. 
Fortunately, the situation can be radically improved if 
Lu will be expressed in terms of so-called adjoint state. 

calculate the material or shape derivatives of solutions 
to the boundary value problem. In addition, d J can 

A known fact of the optimization theory is that 
in order to calculate the first- order configuration 

be expressed as an integral of a linear form of T with 
coefficients depending only on the state variables and 

derivative d J of functional, it is not required to the adjoint state, which is defined as follows. 

The adJ"oint state is the solution h =(h(i) L(z)) L(;)=(wCil.m* ,,,• .1=(i)* .1=Ci)*.n*) E ws+l,r(n)xws,r(n)xlR* * , "* , "* * , 1 , r l , '='1 , '='2 , 1 , 

conjugate problem 
2 2

I µi.1.w!j) -Vro �)-ReH;(wi1l)+ (-Ii+! a€v!2) -wi 1�+\j/; · V<p; + Ic::Y) -v�y)· = jj(i) inn,
}� }� 

Cl �[�· * �{• o-• * •)� divw.' = II t:t Pki'Vk + 
f=t_

\1:kXkJ P1; + µkj P1;ffik j + IIA in n,

2 
jjUly7t �i)* +'t .. t�i)* = -Y-�" n'x 0

. in Q '-:i; u'-:i; lJ L.,. k kz , 

W-.u) = 0 on ar., "'* - 0 on -..,i 
�� 'I' i - £..out> 

k=I 

C)* . 
* * 

�/ =OonI1n,IIro; =ro;,i,j=l,2. 

to the 

(67) 

Here the coefficients and given functions are defined 
through the state variables as in the problem ( 40) and 
(42); A, B;, C; are defined by the formulas (55). 
Therefore, the adjoint state is completely defined by 

value problem for adjoint state has a unique solution of 
class ws+i r(n)xW8 ·'(n)xlR. Therefore, the adjoint 
state is well-defined and unique. The following theorem 
shows that Lu can be represented as an integral of a 

the state variables, and does not depend on T . Let 
us note that B; E ws-l,r(n) and A,C; E ws,r (n). 
Consequently, according to Theorem 2, the boundary 

linear form of T . 
Theorem 5. 1 Under the assumptions of Theorem 4, 

the following formula is valid 

where h. = cliJ1) ,11.(2)), J;J;) = (w£il, m;, If/;, c;p)•, c;fl* ,n;) is the adjoint state (solution to the problem (67)) and
2 

v; = -Rep;�(o .v�uury+IDJ °II'ii(il .vuury+ Lµldiv(1I'vuury+Il])'II',1.iiul +.1.�uury),
j=I 

[* = a1!'�(2)-iiQ� d* = ½rr(Il]))= divT ·1, TIJ! = divT ·1-DT, 1[' = divTI-Df-(pr
Y 

(-(i) )-(-(i) ) . -
P f Ch . H G. F M1. M2. s- - B A C. 0 0 0 z -1 2 d 1 · Th 3 b · h £ 1 roo . oos1ng ' '' '' '' '' ' ' ' '' ' ' ' ' ' an app y1ng eorem , we o tam t e ormu a 

Thus we shave studied properties of the boundary 
value problem (6) solutions depending on the shape of the 
obstacle in a flow of fluid, which allowed the study of the 
properties of this problem solution functional. Formulas for 

shape derivative of this functional were obtained, which can 
be the basis of building and implementation of numerical 
calculations to find the optimal shape of the obstacle in a 
flow of mixture of viscous compressible fluids. 
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