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Abstract: A Bose-Einstein condensate of bosons with repulsion, described by the Gross-Pitaevskii equation and restricted by an 
impenetrable “hard wall” (either rigid or flexible) which is intended to suppress the “snake instability” inherent for dark solitons, is 
considered. The Bogoliubov-de Gennes equations to find the spectra of gapless Bogoliubov excitations localized near the “domain 
wall” and therefore split from the bulk excitation spectrum of the Bose-Einstein condensate are solved. The “domain wall” may model 
either the surface of liquid helium or of a strongly trapped Bose-Einstein condensate. The dispersion relations for the surface excitations 
are found for all wavenumbers  along the surface up to the ”free-particle” behavior , the latter was shown to be bound to the “hard wall” 
with some “universal” energy . 
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INTRODUCTION
Initially the Gross-Pitaevskii equation (GPE) 

was intended to describe structures and excitations in 
superfluid helium [1, 2]. Being a non-linear Schrödinger 
equation it possesses a broad spectrum of applications for 
various non-linear processes in condensed matter such 
as bright and dark solitons in Bose-Einstein condensate 
(BEC) and non-linear optics [2], as well as the waves 
of finite amplitude on the surface of liquid [3]. BEC 
disturbances known as Bogoliubov excitations [4, 5] are 
described by the eigenmodes of the matrix Bogoliubov-
de Gennes equation (BdGE) that follows from GPE and 
has become an archetype in many fields ranging from 
superconductivity [6] to the gravitational black hole 
analogy in BEC [7, 8]. The ubiquitous nature of GPE 
and BdGE demands rigorous analytical solutions though 
not many of them have been obtained.

Domain wall solutions of GPE such as 2D dark 
solitons are known to be unstable except the case of a 
solid wall. Maybe this explains the fact that the BdG 
equation has not been paid much attention to find the 
localized solutions near such walls. Yet even the case 
of the solid wall deserves investigation as far as it is 
connected with the generic topic of edge excitations 
in topological phases. The situation may bear some 
resemblance to two-band models with Majorana bound 
states that arise as solutions to three dimensional BdG 
theories. The gapless modes that propagate along 
a physical boundary, while they are exponentially 

localized away from the physical boundary are gapless 
boundary modes or edge states.

The surface excitations in restricted BECs (superfluid 
helium 4 with BEC confined in pores [9], self-bound 
BEC at the surface of superfluid helium [10], as well as 
at the surface of BEC trapped in an external potential 
[11], or BEC near a solid wall [12]) are of fundamental 
interest. One way to obtain surface excitations of 
BEC was considered in the work by Anglin et al. [11] 
which treats the surface excitation of stable BEC (half 
analytically, half numerically) in the presence of an 
external linear trapping potential.

Unlike the “soft” trapping potential [11], in order 
to make the problem analytically tractable one may 
consider the extreme boundary condition of the solid 
wall for the surface of trapped BEC which stability 
was proven in [12] by showing that the imposition of 
the boundary condition of zero wavefunction on the 
wall ensures the stability of the solution near a solid 
wall in spite of the fact that the “domain wall” itself 
is essentially unstable. In other words, the “hard wall” 
condition means that the wavefunction of BEC vanishes 
at the place where “a steep repulsion with a turn-on 
length smaller than the healing lengths and penetration 
depths of the condensates” exists [13]. For example, 
potentials steeper than harmonic were prepared by 
using Laguerre-Gauss doughnut-shaped laser beams 
for a BEC container [14]. An inhomogeneous stationary 
solution of GPE (the “domain wall”) which coincides 
with the half of the dark soliton at rest (the kink soliton, 
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Ψ� = tanh(�), the distance x is measured in the units 
of the healing length, see below) [2] may have one of 
its physical realization as a model for BEC near a solid 
wall [12] where localized Bogoliubov excitations were 
proposed to exist [15]. However, an exact analytical 
solution for correspondent surface-bound excitations (if 
any) has not been found. 

Although the stationary dark soliton in BEC was 
proven to be unstable with the “snake instability” [12, 
16], the hard wall boundary condition may also 
approximate the sharpness of a self-bound potential at 
a free surface of liquid helium which was proven to be 
composed of nearly 100% BEC that satisfies GPE [10]. 
One may consider the free kink wall of Ψ� = tanh(�) 
as a model for a free surface demanding only the 
topological stability of such a solution in which its 
nodal surface 2 undergoes weak flexural oscillations. 
For this case the position of the “hard wall” is flexible 
(like an impenetrable membrane on the surface of 
helium II) and it imitates the free surface of the liquid. 
Then the role of a hard wall container is played by the 
liquid surface of helium II. 

Here we consider the problem of the localized 
gapless excitation modes by finding analytical 
solutions of a matrix Schrödinger equation being a 
slight (but important for what follows) modification of 
BdGE [5] as such as given in [12, 15, 16]. The binding 
energy of localized excitations is of our concern in the 
present work. Surprisingly, we found that the spectrum 
of surface excitations can be calculated analytically for 
any � to be compared with the numerical results and 
with the analytical results obtained for limiting cases 
�  � 0 and �  �  �. The natural limit of �  �  � which 
in the bulk BEC results in the energy spectrum 
ε =  (ℏ�)�⁄2� + μ, where � is the mass of the boson 
and μ = ��� is the chemical potential while g and n0 
are the intensity of the repulsion and the BEC particle 
density, correspondingly, leads to ε =  (ℏ�)�⁄2� +
+	μ − ∆. The analytical approach developed below for 
solving the Bogoliubov-de Gennes equations may turn 
useful for other applications. 

OBJECTS AND METHODS OF STUDY 

Basic equations 
GPE can be written as [1]: 

iℏ ∂Ψ
∂t =-

ℏ
2m ∇2Ψ+gn�(|Ψ|2-1)Ψ. (1) 

We introduce dimensionless quantities by 
measuring distances in the units of the healing 
length	� = ℏ ��	⁄ and the energy in the units of	��� =
���, where � = ���� �⁄ 	is the sound velocity. The 
stationary equation (1) for the kink with the node at the 
position x = 0 gives Ψ� = tanh(�) of the soliton. We 
will disturb this solution to investigate its Bogoliubov 
excitations by presenting 	� of Eq. (1) as a sum of 
plane waves [17]:	Ψ = Ψ�(�) + �(��� �) with	ϑ(��� �) =
������(�) ���(����ϱ�� − ���) + �∗�����(�) ���(−������ + ���),
where	�� = (�� ��), lies in the plane orthogonal 
to	�	direction (we consider	� � 0	and all the functions 
decaying exponentially in this direction), ��� is the wave 
vector along this plane and	∗	denotes complex 

conjugation. We will suppress the indices and simplify 
the notation by using � and � instead of 
������(�)	and	������(�). Introducing the functions 
Ψ� = � + � and	Ψ� = � − �, after linearizing Eq. (1) 
we get the pair of coupled Schrödinger equations [15]:  

−�
�
��
��� Ψ� + (3Ψ�� − 1 + ��)Ψ� = εΨ� (2) 

−�
�
��
��� Ψ� + (Ψ�� − 1 + ��)Ψ� = �Ψ� (3) 

where	� = ������ √2⁄ 	and	� = ℏ (��)�⁄ . This pair of 
equations is identical to the corresponding Bogoliubov-
de Gennes equations see [4, 5] if one rewrites them for 
the functions	�	and	�, and also sets	� = 0	and	� = 0. 
As far as we know, Eqs. (2), (3) have never been 
solved before for arbitrary non-zero � and	�. We find a 
formal general solution for these equations and 
illustrate its viability by obtaining the rigorous solution 
of the spectrum of localized phonons. The spectrum of 
bulk excitations can be easily found from (2) and (3) 
when neglecting the derivative terms far from the 
boundary	� = 0 to obtain the well-known Bogoliubov 
spectrum �� = �√2 + ��	in the dimensionless form. 
For	� � 0	it gives the bulk phonon	�� ≈ √2� +
+	�� 2√2⁄ 	and for	� � � �� ≈ �� + 1 which is a free 
boson plus chemical potential. Any localized 
excitations should have the energy spectrum lying 
lower than the bulk one.  

Supersymmetry of BdGE 
It is interesting to note that Eqs. (2), (3) with 

ε = 0	and � = 0 are parts of a supersymmetric 
Hamiltonian with zero ground state energy. Indeed, on 
introducing the matrix operator 

�� = �
− �

√�
�
�� − √2Ψ� 0
0 − �

√�
�
�� +

�
√�

�����

��

�  (4) 

so that the l.h.s. of Eqs. (2), (3) takes the form of a 
matrix Hamiltonian 

��� = ����� =
�
− �

√�
�
�� + 3Ψ�� − 1 0

0 − �
√�

�
�� + Ψ�� − 1

� (5) 

with its partner Hamiltonian 

��� = ����� = ( ) (6) 

to produce a supersymmetric (SUSY) Hamiltonian 

������ = ���� 0
0 ���

� (7) 

that may canonically be expressed through the 
supercharges 
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Ψ� = tanh(�), the distance x is measured in the units 
of the healing length, see below) [2] may have one of
its physical realization as a model for BEC near a solid
wall [12] where localized Bogoliubov excitations were 
proposed to exist [15]. However, an exact analytical 
solution for correspondent surface-bound excitations (if
any) has not been found. 

Although the stationary dark soliton in BEC was 
proven to be unstable with the “snake instability” [12,
16], the hard wall boundary condition may also
approximate the sharpness of a self-bound potential at
a free surface of liquid helium which was proven to be
composed of nearly 100% BEC that satisfies GPE [10]. 
One may consider the free kink wall of Ψ� = tanh(�)
as a model for a free surface demanding only the
topological stability of such a solution in which its
nodal surface 2 undergoes weak flexural oscillations.
For this case the position of the “hard wall” is flexible 
(like an impenetrable membrane on the surface of 
helium II) and it imitates the free surface of the liquid.
Then the role of a hard wall container is played by the
liquid surface of helium II.

Here we consider the problem of the localized
gapless excitation modes by finding analytical 
solutions of a matrix Schrödinger equation being a 
slight (but important for what follows) modification of 
BdGE [5] as such as given in [12, 15, 16]. The binding 
energy of localized excitations is of our concern in the
present work. Surprisingly, we found that the spectrum
of surface excitations can be calculated analytically for 
any � to be compared with the numerical results and 
with the analytical results obtained for limiting cases 
� � 0 and � � �. The natural limit of � � � which 
in the bulk BEC results in the energy spectrum 
ε = (ℏ�)� 2�⁄ + μ, where � is the mass of the boson
and μ = ��� is the chemical potential while g and n0
are the intensity of the repulsion and the BEC particle
density, correspondingly, leads to ε = (ℏ�)� 2�⁄ +
+	μ − ∆. The analytical approach developed below for
solving the Bogoliubov-de Gennes equations may turn
useful for other applications.

OBJECTS AND METHODS OF STUDY 

Basic equations 
GPE can be written as [1]: 

iℏ ∂Ψ
∂t =-

ℏ
2m ∇2Ψ+gn�(|Ψ|2-1)Ψ. (1)

We introduce dimensionless quantities by
measuring distances in the units of the healing 
length � = ℏ ��⁄ and the energy in the units of	��� =
���, where � = ���� �⁄ is the sound velocity. The 
stationary equation (1) for the kink with the node at the
position x = 0 gives Ψ� = tanh(�) of the soliton. We
will disturb this solution to investigate its Bogoliubov
excitations by presenting 	� of Eq. (1) as a sum of 
plane waves [17]:	Ψ = Ψ�(�) + �(��� �) with	ϑ(��� �) =
������(�) ���(����ϱ�� − ���) + �∗�����(�) ���(−������ + ���),
where	�� = (�� ��), lies in the plane orthogonal
to	� direction (we consider � � 0 and all the functions
decaying exponentially in this direction), ��� is the wave
vector along this plane and	∗	denotes complex

conjugation. We will suppress the indices and simplify
the notation by using � and � instead of 
������(�) and	������(�). Introducing the functions
Ψ� = � + � and	Ψ� = � − �, after linearizing Eq. (1) 
we get the pair of coupled Schrödinger equations [15]:

−�
�
��
��� Ψ� + (3Ψ�� − 1 + ��)Ψ� = εΨ� (2) 

−�
�
��
��� Ψ� + (Ψ�� − 1 + ��)Ψ� = �Ψ� (3) 

where	� = ������ √2⁄ and	� = ℏ (��)�⁄ . This pair of
equations is identical to the corresponding Bogoliubov-
de Gennes equations see [4, 5] if one rewrites them for
the functions	� and	�, and also sets � = 0 and	� = 0.
As far as we know, Eqs. (2), (3) have never been
solved before for arbitrary non-zero � and	�. We find a
formal general solution for these equations and 
illustrate its viability by obtaining the rigorous solution 
of the spectrum of localized phonons. The spectrum of 
bulk excitations can be easily found from (2) and (3) 
when neglecting the derivative terms far from the
boundary	� = 0 to obtain the well-known Bogoliubov 
spectrum �� = �√2 + �� in the dimensionless form. 
For � � 0 it gives the bulk phonon	�� ≈ √2� +
+	�� 2√2⁄ and for	� � � �� ≈ �� + 1 which is a free 
boson plus chemical potential. Any localized
excitations should have the energy spectrum lying 
lower than the bulk one. 

Supersymmetry of BdGE
It is interesting to note that Eqs. (2), (3) with 

ε = 0 and � = 0 are parts of a supersymmetric
Hamiltonian with zero ground state energy. Indeed, on
introducing the matrix operator 

�� = �
− �

√�
�
�� − √2Ψ�	 0
0 − �

√�
�
�� +

�
√�

�����

��

� (4) 

so that the l.h.s. of Eqs. (2), (3) takes the form of a 
matrix Hamiltonian 

��� = ����� =
�
− �

√�
�
�� + 3Ψ�� − 1 0

0 − �
√�

�
�� + Ψ�� − 1

� (5) 

with its partner Hamiltonian 

��� = ����� = ( ) (6) 

to produce a supersymmetric (SUSY) Hamiltonian 

������ = ���� 0
0 ���

� (7) 

that may canonically be expressed through the
supercharges

�� = �0 0
�� 0� , ��

� = �0 ���
0 0 � (8) 

as anticommutator 

������ = ��, ����	��� = 0, ������ = 0. (9) 

The supersymmetry is explicitly broken at	� � 0 
and	� � 0 which eventually leads to splitting the 
degenerate zero ground state into two gapless 
excitations (a “light” one with	� � �	and a “heavy” one 
with	� � �� �⁄ ) [15], both bound to the wall. 

Boundary conditions 
The boundary conditions for Ψ� and Ψ� can be of 

two kinds [15]. At the node of the kink Ψ = 0 that is 
both ��Ψ = 0 and ��Ψ = 0 therefore Ψ� = 0 
and	Ψ� = 0. However, for 	�� the additional possibility 
exists. Indeed, for � = 0 and �	 = 	0 Eqs. (2), (3) have 
the solutions Ψ�� = 	1	–	Ψ�� and Ψ�� = 	Ψ� the first of 
which is the so-called “zero mode” [15], [4] or 
Goldstone gapless mode corresponding to a translation 
of the kink 	�� as a whole along	�, being the derivative 
of the kink	Ψ�:Ψ�(� + ��) ≈ 	Ψ�(�) + Ψ����. Thus 
the condition ��Ψ = 0 turns into 
Ψ����(��, �) + 	���(��, �) = 0 which determines the 
shape of the loci of nodes ��(��, �) (the shape of the 
surface). The derivative of such a mode with respect to 
� is zero at	� = 0. Thus the mode with the mixed 
boundary conditions �

�� Ψ�|��� = 0 and Ψ�|��� = 0 
would allow the rippling of the soliton and will be 
called the “ripplon” mode (predicted in [15]). As we 
shall see below its energy spectrum at low κ coincides 
with the one for the capillary wave. The mode with the 
zero boundary conditions Ψ�|��� = 0  and Ψ�|��� = 0 
which correspond to a flat boundary of the solid wall 
will be called the “surface phonon” mode (as far as its 
spectrum starts linear) and was predicted in [15]. 
Finally, the very condition of the solid wall excludes 
the possible solution �Ψ� − 1 [16] of Eq. (3) at	� = 0, 
� = 0 which could be responsible for the “snake” 
instability of the “domain wall” and which does not 
satisfy the zero boundary conditions. 

Long-wavelength approximation solution 
First consider the case of	� � 0. In case of the 

ripplon spectrum we find Ψ�,� as a series in �:	Ψ� ≈
Ψ�� + �Ψ�� + �(ε�) and	Ψ� ≈ Ψ�� + �Ψ�� + �(��). A 
zero approximation is the solution of homogeneous 
equations Eqs. (2), (3) with	� = 0. The solutions can be 
found for any κ (this can be verified by the direct 
substitution): 

Ψ�� = � ���(−α��) ���
���
� + ��Ψ� + Ψ���  (10)

Ψ�� = � ���(−���) (Ψ� + ��), (11) 

where �� = √2√2 + �� and �� = √2�. To find Ψ�� 
and Ψ�� we have to solve the inhomogeneous equations 
that follow from Eqs. (2), (3) where	� = 0: 

−�
�
��
��� Ψ�� + (3Ψ�� − 1)Ψ�� = �Ψ� (12) 

−�
�
��
��� Ψ�� + (Ψ�� − 1)Ψ�� = �(1 − Ψ��)  (13) 

With the help of the Green functions of the 
homogeneous equations the inhomogeneous solutions 
are found as: 

Ψ�� = � �
� (Ψ� + �(1 − Ψ��)) (14) 

Ψ�� = −�� (15) 

Finally, the derivative with respect to � of 	Ψ� at 
� = 0 is found from Eqs. (10), (14) to be 
Ψ�� = ���(2 − ��)(2 + ��) 3⁄ + ��, which according 
to the mixed boundary conditions should be zero 
together with Ψ� = −�� + ���, as it follows from 
Eqs. (11), (15). The zero determinant with respect to � 
and � 

��� ���(2 − ��)(2 + ��) 3⁄ �
−� ��� = 0  (16) 

gives the ripplon spectrum taking into account 
that	�� ≈ 2 + �� 2⁄  for � � 0 and retaining only the 
lowest power of � 

� = ��√�
� �� �⁄ . (17) 

Spectrum (17) is shown in Fig. 1. Note that the 
localization of the ripplon at low � is governed 
by	�� = √2�, which is compared below with the 
numerical solution for	��. As it was already noted in 
[15] the spectrum (17) exactly coincides with the
well-known expression for the frequency of the
capillary waves multiplied by the Planck constant
when written in a dimensional form:
� ≈ ��� ���⁄ �� �⁄  where � = 2 3⁄ ���� is the 
surface energy of the stationary soliton Ψ� [1]. In fact, 
� is exactly the half of the energy of the dark soliton 
at rest (see Eq. (5.59) in [2]).  

The zero boundary conditions lead to surface 
phonons for � � 0 [15] and below we obtain the whole 
spectrum analytically. Here we only mention that �� 
for phonons at low � is proportional to ��	which 
indicates much weaker localization, in contrast to the 
ripplons. 

Short-wavelength approximation solution 
For the case � � � introduce function �	and 

constant ∆ so that	Ψ� = Ψ� + χ k�⁄ ,Ψ� = Ψ�	and 
� = �√�� + 2 − ∆ + �� + 1 − ∆. Then Eqs. (2), (3) 
turn into 

−�
�
��
��� Ψ� + (3	��� − 2 + ∆)	�� = −�  (18) 

−�
�
��
��� 	�� + (	��� − 2 + ∆)	�� = � (19)
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Fig. 1. The dimensionless spectra of the elementary excitations vs the dimensionless wavenumber and wavefunctions. 
(a) The thick solid line is the Bogoliubov bulk excitation spectrum, the dashed line is the capillary wave spectrum (17), 
the circles mark the spectrum of the ripplon calculated by numerical solving Eqs. (2), (3), the stars mark the numerical 
spectrum of the surface phonon and the thin line is the exact solution (36). As it should be its energy lies higher than 
the energy of the ripplon because of two nodes in the zero boundary conditions; (b) the numerical wavefunctions of 
the surface phonon at ĸ = 3.5 are shown with dashed (Ψ1) and dot (Ψ2) lines together with Ψ∞ (solid line) which they 
approach; (c) the numerical wavefunctions of the ripplon mode at ĸ = 5. It is seen that Ψ1 (thick solid line) lies very 
close to Ψ2 except the coordinate origin where Ψ1 has zero derivative. The dashed and dot lines show the asymptotic 
exp(–α2x) for Ψ1, 2.

which after adding and subtracting both equations lead to 

�� = (1 � 	���)�� �	⁄ ��� ��� � �, �� + � + 1, �� + 1, ��	��� �  (20) 

where the hypergeometric function contains �� = √2∆	and � = �√17– 	1� 2⁄  is the solution of the equation 
�(�	 + 	1) = � (see [18]) and � = �	���	��. The boundary condition 	�� = 0 at � = 0 gives 
the equation 

��� ��� � �, �� + �1, �� + 1, ��� =
������(����)

����(������)���
�
�(������)�

= 0.  (21) 

which fulfils for 1 + �� � � = 0 and therefore �� = √17– 	3 2⁄ ≈ 0.562 while ∆= ��� 2⁄ ≈ 0.158. Finally, the 
hypergeometric function in (20) reduces to 	�� so that 	�� = 	���1	–		����

�� �⁄ = ����(�) ����(�)��⁄  (see Fig. 1(b))

and	� = �	���(1 � 	���)�� �⁄ , therefore, both 	�� and 
	�� satisfy the zero boundary conditions. Analogously, 
one can show (we skip this calculation which makes
use of the known solution of homogeneous equations
(10), (11) to satisfy the boundary conditions) that the 
function 	�� is also the limiting function for large � for 
the mixed boundary conditions so that the difference 
between the functions is seen only in the close
proximity to the boundary at the distance 1 �⁄
(see Fig. 1(c) where near � =0 	�� deviates from 	��
and meets the 	� axis with zero derivative). Thus the 
binding energy of the excitation localized near the 
surface behaves universally as well as its wavefunction

does. In dimensional units the binding energy
is	0.158��� ≈ ��.

Exact solution of BDGE
Let us now find the exact solution of Eqs. (2), (3) at

arbitrary	�. To do this let us transform these equations
into a single matrix hypergeometric equation. Matrix
generalizations of both hypergeometric function and
gamma function were shown to be mathematically 
correct (see Refs. ([19]) and ([20])). Introducing
� = (1 � 	��) 2⁄ and		��,� = (1 � ���)� �⁄ ��,� we 
rewrite Eqs. (2), (3) into

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �6 � �(� + 1)��� + �
��(���)	�

��
� � 2 � ����� = � ��

��(���)

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �2 � �(� + 1)��� + �
��(���) 	�

��
� � ����� = ε ��

��(���). (22)

To turn (22) into a matrix hypergeometric equation 
we introduce the vector-function	��, the unit matrix	1�
and the matrices

�� = ������ � (23)

��� = 2 �2 + �� �
� ��� (24)

�̂ = �� + 1� (25)

1� + �� + �� = 2(�� + 1�) (26)

����� = �6 0
0 2� � ��� � ��. (27)

The matrix	�� can be obtained as a square root of ���
which gives

which after adding and subtracting both equations lead to

	�� = (1 � 	���)�� �	⁄ ��� ��� � �, �� + � + 1, �� + 1, �� ��
� � (20)

where the hypergeometric function contains �� = √2∆ and � = �√17– 1� 2⁄ is the solution of the equation
�(�	 + 1) = � (see [18]) and � = �	���	��. The boundary condition 	�� = 0 at � = 0 gives
the equation 

��� ��� � �, �� + �1, �� + 1, ��� =
������(����)

����(������)���
�
�(������)�

= 0. (21)

which fulfils for 1 + �� � � = 0 and therefore �� = √17– 	3 2⁄ ≈ 0.562 while ∆= ��� 2⁄ ≈ 0.158. Finally, the 
hypergeometric function in (20) reduces to 	�� so that 	�� = 	���1	– 	����

�� �⁄ = ����(�) ����(�)��⁄ (see Fig. 1(b))

and	� = �	���(1 � 	���)�� �⁄ , therefore, both 	�� and 
��	satisfy the zero boundary conditions. Analogously, 
one can show (we skip this calculation which makes 
use of the known solution of homogeneous equations 
(10), (11) to satisfy the boundary conditions) that the
function 	�� is also the limiting function for large � for 
the mixed boundary conditions so that the difference 
between the functions is seen only in the close 
proximity to the boundary at the distance 1 �⁄
(see Fig. 1(c) where near � =0 	�� deviates from 	��
and meets the 	� axis with zero derivative). Thus the 
binding energy of the excitation localized near the 
surface behaves universally as well as its wavefunction 

does. In dimensional units the binding energy 
is	0.158��� ≈ ��.

Exact solution of BDGE 
Let us now find the exact solution of Eqs. (2), (3) at 

arbitrary	�. To do this let us transform these equations 
into a single matrix hypergeometric equation. Matrix 
generalizations of both hypergeometric function and 
gamma function were shown to be mathematically 
correct (see Refs. ([19]) and ([20])). Introducing 
� = (1 � 	��) 2⁄  and		��,� = (1 � 	���)� �⁄ ��,� we 
rewrite Eqs. (2), (3) into 

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �6 � �(� + 1)��� + �
��(���) �

��
� � 2 � ����� = � ��

��(���)

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �2 � �(� + 1)��� + �
��(���) �

��
� � ����� = ε ��

��(���). (22) 

To turn (22) into a matrix hypergeometric equation 
we introduce the vector-function	��, the unit matrix	1�
and the matrices 

�� = ������ � (23) 

��� = 2 �2 + �� �
� ��� (24) 

�̂ = �� + 1�  (25) 

1� + �� + �� = 2(�� + 1�) (26) 

����� = �6 0
0 2� � ��� � ��. (27) 

The matrix	�� can be obtained as a square root of ���
which gives 
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�� = √��� = 2 �� �
� �� (28) 

where � = �1 + �� 2 − ��⁄ , � = ��� 2 − ��⁄ , and 
� = ���� + 1 − (��(�� + 2) − ��	)� �⁄ (2√�� + 1)� .
The positive eigenvalues of the matrix �� are 

��,� = √2�1 + �� ± √�� + 1�� �⁄
(29) 

and ���(−���) determines the asymptotic decay of 
	�� and 	�� as � � �.

After introducing the matrices, Eq. (22) becomes 

z(1 − z)Φ� �� + (c� 	−	(1� + �� + ��)z)Φ� � − ����Φ� = 0, (30) 

where primes mean differentiation with respect to �.
Equation (30) has a formal solution as the matrix-

valued hypergeometric function [19] 

��� (�, �, �, �) = ∑ ��
����� ���, ��, �̂��, (31) 

where ���, ��, �̂�� = 1;

���, ��, �̂���� = (�̂ + �)��(�� + �)��� + �� � (�̂ + � − 1)��(�� + � − 1)��� + � − 1�� �̂������. (32) 

We use this formal solution to obtain the spectrum 
of the phonon localized near the soliton. The boundary 
condition at � = 0 (that is at	� = 1 2⁄ ) will be fulfilled 
when	�� = 0. As far as the hypergeometric function at 
� = 1 2⁄  can be expressed through the matrix gamma 
function ([20]) (because	�̂ = (1� + �� + ��) 2⁄ , see 
Eq. (26)) so that 

��� ���, ��, �̂, ��� =
������(�̂)

����(����)���
�
��������

 (33) 

then the condition of zero � means that the matrix (33) 
has a zero eigenvalue, that is the determinant of (33) 
should be zero. In turn, matrix gamma functions could 
be presented as the products of matrices [20] 

����� = ������(� − 1)� ��������� + 1��� ��� + �1�����, (34)

the most relevant for the zero determinant should be
the determinant of either 1� + �� or 1� + ��. In fact
one can prove that the determinant of each of them
gives the same spectrum. However an analytical 
solution for the matrix equations (26), (27) for �� and	��
is difficult. To obtain the analytical results we will 
instead utilize the product �� = ((1� + ��)(1� + ��)) 2⁄ =
= (1� + �� + �� + ����) 2⁄ that uses already calculated 
matrices. It is easy to obtain �� from (26), (27) and (28)

�� = �3� + �� 3� + �
3� + � 3� + ���. (35)

Finally, the spectrum of the surface phonons is
determined by the equation

��� �� = (3� + ��)(3� + ��) − (3� + �)� = 0. (36)

One can make sure that Eq. (36) reproduces the
spectrum calculated before at � � 0 and	� � �.
Indeed, at � � 0 the spectrum is � = √2� + �(��) so
that the �� term is missing as it was predicted in [15],
while the bulk phonon starts with higher energy

as	�� = √2� + �� �2	√2�⁄ + �(��). Let us define the
absolute value of the binding energy as	∆� = �� − �.
Then it starts as �� �2	√2�⁄ (see Fig. 2(c)). Now let us 
consider the other limit	� � �. It is easy to see that 
seeking the solution in the form � � �� + 1 − ∆ leads 
to � = � � � 2⁄ + √2∆ 4⁄ and � � � 2⁄ − √2∆ 4⁄
which after substitution into Eq. (36) give	2∆ +
+	3√2∆ − 2 = 0. It has the same root as we found
before from Eq. (21) √2∆= √17– 	3 2⁄ = �� ≈ 0.562
and therefore	∆�� = ∆= ��� /2 ≈ 0.158. Such a
coincidence with exact asymptotic results found before
brings confidence to Eq. (36) which is enhanced by a 
good correspondence with the results obtained by
direct numerical solution of the coupled Schrödinger 
equations (Fig. 2). Note that the slower decay exponent
�� can be approximated by a simple expression 
�� = �� (1 + �� ��⁄⁄ ) that fits the exact expression of 
Eq. (29) with � from the exact solution of Eq. (36) 
within 0.2%. We plot the decay exponential in Fig. 
2(d) together with the results of the numerical solution.
Unfortunately, the case of mixed boundary conditions 
for ripplons cannot be treated in the same way.

Fig. 2. (a) The dimensionless binding energy of the ripplon vs the dimensionless wavenumber. The squares show the 
results of the numerical solution of Eqs. (2), (3) with the mixed boundary conditions. The horizontal line is drawn at the 
energy Δ = 0.158; (b) The squares show the decay parameter α2 for the ripplon obtained with Eq. (29). The horizontal 
line is drawn at α∞ = 0.568. The dashed line is the analytical solution α ≈ √2ĸ at low ĸ; (c) The binding energy of the 
surface phonon vs the wavenumber. The solid line is the result of the exact solution given by Eq. (36). The squares 
show the results of the numerical solution of Eqs. (2), (3) with the zero boundary conditions. The horizontal line is 
drawn at the energy Δ. The dashed line is ĸ3/(2√2) that follows from the low  behavior (see text); (d) The solid line is 
the result of the exact solution for α2 given by Eqs. (36), (29). The squares show the results of the numerical solution of 
Eqs. (2), (3). The horizontal line is drawn at α∞. The dashed line is ĸ2 predicted in [15] (see text).

which after adding and subtracting both equations lead to

	�� = (1 � 	���)�� �	⁄ ��� ��� � �, �� + � + 1, �� + 1, �� ��
� � (20)

where the hypergeometric function contains �� = √2∆ and � = �√17– 1� 2⁄ is the solution of the equation
�(�	 + 1) = � (see [18]) and � = �	���	��. The boundary condition 	�� = 0 at � = 0 gives
the equation 

��� ��� � �, �� + �1, �� + 1, ��� =
������(����)

����(������)���
�
�(������)�

= 0. (21)

which fulfils for 1 + �� � � = 0 and therefore �� = √17– 	3 2⁄ ≈ 0.562 while ∆= ��� 2⁄ ≈ 0.158. Finally, the 
hypergeometric function in (20) reduces to 	�� so that 	�� = 	���1	– 	����

�� �⁄ = ����(�) ����(�)��⁄ (see Fig. 1(b))

and	� = �	���(1 � 	���)�� �⁄ , therefore, both 	�� and 
	�� satisfy the zero boundary conditions. Analogously, 
one can show (we skip this calculation which makes
use of the known solution of homogeneous equations
(10), (11) to satisfy the boundary conditions) that the 
function 	�� is also the limiting function for large � for 
the mixed boundary conditions so that the difference 
between the functions is seen only in the close
proximity to the boundary at the distance 1 �⁄
(see Fig. 1(c) where near � =0 	�� deviates from 	��
and meets the 	� axis with zero derivative). Thus the 
binding energy of the excitation localized near the 
surface behaves universally as well as its wavefunction

does. In dimensional units the binding energy
is	0.158��� ≈ ��.

Exact solution of BDGE
Let us now find the exact solution of Eqs. (2), (3) at

arbitrary	�. To do this let us transform these equations
into a single matrix hypergeometric equation. Matrix
generalizations of both hypergeometric function and
gamma function were shown to be mathematically 
correct (see Refs. ([19]) and ([20])). Introducing
� = (1 � 	��) 2⁄ and		��,� = (1 � ���)� �⁄ ��,� we 
rewrite Eqs. (2), (3) into

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �6 � �(� + 1)��� + �
��(���)	�

��
� � 2 � ����� = � ��

��(���)

�(1 � �) ������� + (� + 1 � 2(� + 1)�) ����� + �2 � �(� + 1)��� + �
��(���) 	�

��
� � ����� = ε ��

��(���). (22)

To turn (22) into a matrix hypergeometric equation 
we introduce the vector-function	��, the unit matrix	1�
and the matrices

�� = ������ � (23)

��� = 2 �2 + �� �
� ��� (24)

�̂ = �� + 1� (25)

1� + �� + �� = 2(�� + 1�) (26)

����� = �6 0
0 2� � ��� � ��. (27)

The matrix	�� can be obtained as a square root of ���
which gives

�� = √��� = 2 �� �
� �� (28)

where � = �1 + �� 2 − ��⁄ , � = ��� 2 − ��⁄ , and
� = ���� + 1 − (��(�� + 2) − �� )� �⁄ (2√�� + 1)� .
The positive eigenvalues of the matrix �� are

��,� = √2�1 + �� ± √�� + 1�� �⁄
(29)

and ���(−���) determines the asymptotic decay of 
	�� and 	�� as � � �.

After introducing the matrices, Eq. (22) becomes 

z(1 − z)Φ� �� + (c� 	−	(1� + �� + ��)z)Φ� � − ����Φ� = 0, (30) 

where primes mean differentiation with respect to �.
Equation (30) has a formal solution as the matrix-

valued hypergeometric function [19]

��� (�, �, �, �) = ∑ ��
����� ���, ��, �̂��, (31)

where ���, ��, �̂�� = 1;

���, ��, �̂���� = (�̂ + �)��(�� + �)��� + �� � (�̂ + � − 1)��(�� + � − 1)��� + � − 1�� �̂������. (32)

We use this formal solution to obtain the spectrum
of the phonon localized near the soliton. The boundary 
condition at � = 0 (that is at	� = 1 2⁄ ) will be fulfilled 
when	�� = 0. As far as the hypergeometric function at 
� = 1 2⁄ can be expressed through the matrix gamma
function ([20]) (because	�̂ = (1� + �� + ��) 2⁄ , see
Eq. (26)) so that 

��� ���, ��, �̂, ��� =
������(�̂)

����(����)���
�
��������

(33)

then the condition of zero � means that the matrix (33)
has a zero eigenvalue, that is the determinant of (33) 
should be zero. In turn, matrix gamma functions could
be presented as the products of matrices [20]

����� = ������(� − 1)� ��������� + 1��� ��� + �1�����, (34) 

the most relevant for the zero determinant should be 
the determinant of either 1� + �� or 1� + ��. In fact 
one can prove that the determinant of each of them 
gives the same spectrum. However an analytical 
solution for the matrix equations (26), (27) for �� and	��
is difficult. To obtain the analytical results we will 
instead utilize the product �� = ((1� + ��)(1� + ��)) 2⁄ =
= (1� + �� + �� + ����) 2⁄ 	that uses already calculated 
matrices. It is easy to obtain ��	from (26), (27) and (28) 

�� = �3� + �� 3� + �
3� + � 3� + ���. (35) 

Finally, the spectrum of the surface phonons is 
determined by the equation 

��� �� = (3� + ��)(3� + ��) − (3� + �)� = 0. (36) 

One can make sure that Eq. (36) reproduces the 
spectrum calculated before at � � 0 and	� � �.
Indeed, at � � 0 the spectrum is � = √2� + �(��)	so
that the �� term is missing as it was predicted in [15], 
while the bulk phonon starts with higher energy 

as	�� = √2� + �� �2	√2�⁄ + �(��). Let us define the 
absolute value of the binding energy as	∆� = �� − �.
Then it starts as �� �2	√2�⁄  (see Fig. 2(c)). Now let us 
consider the other limit	� � �. It is easy to see that 
seeking the solution in the form � � �� + 1 − ∆ leads 
to � = � � � 2⁄ + √2∆ 4⁄ 	and � � � 2⁄ − √2∆ 4⁄
which after substitution into Eq. (36) give	2∆ +
+	3√2∆ − 2 = 0. It has the same root as we found 
before from Eq. (21) √2∆= √17– 	3 2⁄ = �� ≈ 0.562
and therefore	∆�� = ∆= ��� /2 ≈ 0.158. Such a 
coincidence with exact asymptotic results found before 
brings confidence to Eq. (36) which is enhanced by a 
good correspondence with the results obtained by 
direct numerical solution of the coupled Schrödinger 
equations (Fig. 2). Note that the slower decay exponent 
�� can be approximated by a simple expression 
�� = �� (1 + �� ��⁄⁄ ) that fits the exact expression of 
Eq. (29) with � from the exact solution of Eq. (36) 
within 0.2%. We plot the decay exponential in Fig. 
2(d) together with the results of the numerical solution. 
Unfortunately, the case of mixed boundary conditions 
for ripplons cannot be treated in the same way. 
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CONCLUSION
In conclusion, we have found the analytic spectra 

and wavefunctions of localized Bogoliubov elementary 
excitations existing near the inhomogeneous stationary 
solution of the Gross-Pitaevskii equation which may 
represent a physical model for the surface of liquid 
helium. In this status our solutions predict surface 
modes - ripplons and surface phonons - that may 
contribute to the thermodynamics of the surface at low 
temperatures [15]. We believe that our results and the 
method for exact solving the Bogoliubov-de Gennes 

equations could be useful in more sophisticated cases 
involving solitons.
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