Russian Federation
Russian Federation
GRNTI 27.01 Общие вопросы математики
GRNTI 31.01 Общие вопросы химии
GRNTI 34.01 Общие вопросы биологии
Ion-molecular metal azides are well known because of their high reactivity, and nowadays they are widely used as energetic materials. Despite the large amount of experimental data exists on such kind compounds, the number of theoretical studies is still not so large. The aim of the present work is to study of the electronic structure of Me(N3)2 compounds, where Me=Sr, Ca, Cd, Hg. All the calculations have been carried out within the framework of the density functional theory with the use of the numerical pseudo-atomic orbitals basis. The results of the band structure calculations are presented in the work together with a maps of total and partial electronic density; the data on Cd(N3)2 and α-Hg(N3)2 are presented for the rst time. The values of band gaps calculated are in good agreement with those obtained by other authors or estimated in the experiments. The all the crystals under consideration, except of α-Hg(N3)2, are predominantly ionic compounds with a relatively small fraction of the covalent bonding. The overall structure of the valence band spectra, as well as the character of conduction band bottom, is similar to other heavy metal azides. The comparative analysis of the data on band gaps led to the conclusion about lesser stability of the heavy metal azides than that of the second group metal azides, what is also conrmed by the experimental data
Divalent azides, density functional theory, pseudo-atomic orbitals basis, band gap
1. 1. Fair H. and Walker R. Physics and chemistry of the inorganic azides. Energetic materials. New York: Plenum Press, 1977, 249 p.
2. 2. Weihua Z. and Heming X. Ab initio study of energetic solids: Cupric azide, mercuric azide, and lead azide. The Journal of Physical Chemistry B, 2006, vol. 110, iss. 37, pp. 18196-18203. DOI:https://doi.org/10.1021/jp0643810.
3. 3. Dong F., Cheng X., and Ge S. Structural and electronic properties of Sr(N-3)(2) under pressure. Journal of Theoretical and Computational Chemistry, 2007, vol. 6, iss. 3, pp. 487-494. DOI:https://doi.org/10.1142/S0219633607003088.
4. 4. Jansen R.W. and Sankey O.F. Abiinitio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Physical Review B, 1987, vol. 36, iss. 12, pp. 6520-6531. DOI:https://doi.org/10.1103/PhysRevB.36.6520.
5. 5. Perdew J.P. and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, vol. 23, iss. 10, pp. 5048-5079. DOI:https://doi.org/10.1103/PhysRevB.23.5048.
6. 6. Tran F. and Blaha P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 2009, vol. 102, iss. 22, no. 226401. DOI:https://doi.org/10.1103/PhysRevLett.102.226401.
7. 7. Goedecker S., Teter M., and Hutter J. Separable dual-space Gaussian pseudopotentials. Physical Review B, 1996, vol. 54, iss. 3, pp. 1703-1710. DOI:https://doi.org/10.1103/PhysRevB.54.1703.
8. 8. Hartwigsen C., Goedecker S., and Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 1998, vol. 58, iss. 7, pp. 3641-3662. DOI:https://doi.org/10.1103/PhysRevB.58.3641.
9. 9. Monkhorst H.J. and Pack J.D. Special points for Brillouin-zone integrations. Physical Review B, 1976, vol. 13, iss. 12, pp. 5188-5192. DOI:https://doi.org/10.1103/PhysRevB.13.5188.
10. 10. Lehmann G. andTaut M. On the Numerical Calculation of the Density of States and Related Properties. Physica Status Solidi (b), 1972, vol. 54, iss. 2, pp. 469-477. DOI:https://doi.org/10.1002/pssb.2220540211.
11. 11. Reckeweg O. and Simon A. Azide und Cyanamide - ähnlich und doch anders/Azides and Cyanamides - Similar and Yet Different. Zeitschrift fur Naturforschung B. A journal of chemical sciences, 2003, vol. 58, no. 11, pp. 1097-1104. DOI:https://doi.org/10.1515/znb-2003-1111.
12. 12. Karau F. and Schnick W. Preparation and crystal structure of cadmium azide Cd(N-3)(2). Zeitschrift fur anorganische und allgemeine Chemie, 2005, vol. 631, iss. 12, pp. 2315-2320. DOI:https://doi.org/10.1002/zaac.200500226.
13. 13. Muller U. Die Kristallstruktur von α-Quecksilber(II)-Azid. Zeitschrift für anorganische und allgemeine Chemie, 1973, vol. 399, iss. 2, pp. 183-192., DOI:https://doi.org/10.1002/zaac.19733990207.
14. 14. Deb S.K. Optical absorption and photoconductivity in thin lms of unstable azides. Part 3. - Cadmium azide and mercuric azide. Transactions of the Faraday Society, 1970, vol. 66, pp. 1802-1808, DOI:https://doi.org/10.1039/TF9706601802.
15. 15. Gordienko A.B. and Poplavnoy A. Elektronnaya struktura azidov tyazhelykh metallov [Electron structure of heavy metal azides]. Izvestiya vysshikh uchebnykh zavedeniy. Fizika [News of Higher Education Institutions. Physics], 2004, vol. 47, no. 10, pp. 84-88.
16. 16. Allred A.L. and Rochow E.G. A scale of electronegativity based on electrostatic force. Journal of Inorganic and Nuclear Chemistry, 1958, vol. 5, iss. 4, pp. 264-268. Available at: https://doi.org/10.1016/0022-1902(58)80003-2