Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
Indium selenide (InSe) is one of the representatives of family of layered semiconductors A3B6 with the anisotropic physical properties finding application in the field of nonlinear optics and optoelectronics. The present paper provides the results of calculations of the major structural parameters (lattice constants, lengths of interatomic bonds, layer thickness and interlayer spacing) and the energy of interlayer coupling Eb in bulk InSe, and also the electronic spectra of the bulk crystal and isolated monolayer performed with the use of computational tools of the density functional theory (DFT). A comparative assessment of accuracy of various approximations of DFT allowing to judge their productivity during the studies of physical characteristics of the A3B6 compounds has been provided. It has been shown that the use of van der Waals functionals of the vdW-DF family gives an opportunity to increase significantly the accuracy of determination of values of the structural parameters of InSe and results in Eb from -50 to -67 meV/atom which is comparable to the energy of interlayer interaction in graphite and a number of related compounds. The modeling of structure of a separate monolayer shows a negligible deviation from the characteristics of layers in a bulk crystal. The calculated electronic spectra provide a conclusion about an essential growth of width of the forbidden energy band of indium selenide upon the transition from bulk material to a monolayer
Layered semiconductors, indium selenide, electronic structure, first-principles calculations, van der Waals density functional
1. 1. Shi W. and Ding Y.J. Tunable coherent radiation from terahertz to microwave by mixing two infrared frequencies in a 47-mm-long GaSe crystal. Frontiers in electronics. Selected Topics in Electronics and Systems, 2006, vol. 16, pp. 589-595. DOI:https://doi.org/10.1142/9789812773081_0037.
2. 2. Sell A., Leitenstorfer A., and Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letter, 2008, vol. 33, iss. 23, pp. 2767-2769. DOI:https://doi.org/10.1364/OL.33.002767.
3. 3. Schubert O., Hohenleutner M., Langer F., Urbanek B., Lange C., Huttner U., Golde D., Meier T., Kira M., Koch S.W., and Huber R. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, vol. 8, iss. 2, pp. 119-123. DOI:https://doi.org/10.1038/NPHOTON.2013.349.
4. 4. Nazarov M.M., Sarkisov S.Yu., Shkurinov A.P., and Tolbanov O.P. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation. Applied Physics Letters, 2011, vol. 99, iss. 8, no. 081105. DOI:https://doi.org/10.1063/1.3617438.
5. 5. Hegenbarth R., Steinmann A., Sarkisov S.Yu., and Giessen H. Milliwatt-level mid-infrared (10.5-16.5 mu m) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator. Optics Letters, 2012, vol. 37, iss. 17, pp. 3513-3515. DOI:https://doi.org/10.1364/OL.37.003513.
6. 6. Hegenbarth R., Steinmann A., Mastel S., Amarie S., Huber A.J., Hillenbrand R., Sarkisov S.Y., and Giessen H. High-power femtosecond mid-IR sources for s-SNOM applications. Journal of optics, 2014, vol. 16, iss. 9, no. 094003. DOI:https://doi.org/10.1088/2040-8978/16/9/094003.
7. 7. Balkanski M., Julien C., and Emery J.Y. Integrable lithium solid-state microbatteries. Journal of Power Sources, 1989, vol. 26, iss. 3-4, pp. 615-622. DOI:https://doi.org/10.1016/0378-7753(89)80189-2.
8. 8. Drapak S.I., Bakhtinov A.P., Gavrylyuk S.V., Drapak I.T., and Kovalyuk Z.D. Structural and optical characterization of the propolis films. Applied Surface Science, 2006, vol. 253, iss. 1, pp. 279-282. DOI:https://doi.org/10.1016/j.apsusc.2006.05.092.
9. 9. Wisotzki E., Klein A., and Jaegermann W. Quasi van der Waals epitaxy of ZnSe on the layered chalcogenides InSe and GaSe. Thin Solid Films, 2000, vol. 380, iss.1-2, pp. 263-265. DOI:https://doi.org/10.1016/S0040-6090(00)01520-0.
10. 10. Kudrynskyi Z.R., Bakhtinov A.P., Vodopyanov V.N., Kovalyuk Z.D., Tovarnitskii M.V., and Lytvyn O.S. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals. Nanotechnology, 2015, vol. 26, iss. 46, no. 465601. DOI:https://doi.org/10.1088/0957-4484/26/46/465601.
11. 11. Mas-Ballesté R., Gómez-Navarro C., Gómez-Herrero J., and Zamora F. 2D materials: to graphene and beyond. Nanoscale, 2011, vol. 3, iss. 1, pp. 20-30. DOI:https://doi.org/10.1039/c0nr00323a.
12. 12. Late D., Bin L., Matte R., Rao C.N.R., and Dravid V.P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si Substrates. Advanced Functional Materials, 2012, vol. 22, iss. 9, pp. 1894-1905. DOI:https://doi.org/10.1002/adfm.201102913.
13. 13. Hu P.-A., Wen Z, Wang L., Tan P., and Xiao K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, vol. 6, iss. 7, pp. 5988-5994. DOI:https://doi.org/10.1021/nn300889c.
14. 14. Zhou Y., Nie N., Liu Y., Yan K., Hong J., Jin C., Zhou Y., Yin J., Liu Z., and Peng H. Epitaxy and photoresponse of two-dimensional GaSe crystals on fiexible transparent mica sheets. ACS Nano, 2014, vol. 8, iss. 2, pp. 1485-1490. DOI:https://doi.org/10.1021/nn405529r.
15. 15. Late D.J., Bin L., Luo J., Yan A., Matte R., Grayson M., Rao C.N.R. and Dravid V.P. GaS and GaSe ultrathin layer transistors. Advanced Materials, 2012, vol. 24, iss. 26, pp. 3549-3554. DOI:https://doi.org/10.1002/adma.201201361.
16. 16. Mudd G.W., Svatek S.A., Ren T., Patane A., Makarovsky O., Eaves L., Beton P.H., Kovalyuk Z.D., Lashkarev G.V., Kudrynskyi Z.R., and Dmitriev A.I. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Advanced Materials, 2013, vol. 25, iss. 40, pp. 5714-5718. DOI:https://doi.org/10.1002/adma.201302616.
17. 17. Tamalampudi S.R., Lu Y.-Y., Kumar R., Sankar R., Liao C.D., Moorthy B.K., Cheng, C.H., Chou F.C., and Chen Y.T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Letters, 2014, vol. 14, iss. 5, pp. 2800-2806. DOI:https://doi.org/10.1021/nl500817g.
18. 18. Lei S., Wen F., Li B., Wang Q., Huang Y., Gong Y., He Y., Dong P., Bellah J., George A., Ge L., Lou J., Halas N.J., and Vajtai R. Optoelectronic memory using two-dimensional materials. Nano Letters, 2015, vol. 15, iss. 1, pp. 259-265. DOI:https://doi.org/10.1021/nl503505f.
19. 19. Feng W., Wu J.-B., Li X., Zheng W., Zhou X., Xiao K., Cao W., Yang B., Idrobo J.-C., Basile L., Tian W., and Tan, P. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. Journal of Materials Chemistry C, 2015, vol. 3, iss. 27, pp. 7022-7028. DOI:https://doi.org/10.1039/c5tc01208b.
20. 20. Olguin D., Cantarero A., Ulrich C., and Syassen K. Effect of pressure on structural properties and energy band gaps of gamma-InSe. Physica Status Solidi B-basic Reseach, 2003, vol. 235, iss. 2, pp. 456-463. DOI:https://doi.org/10.1002/pssb.200301602.
21. 21. Olguin D., Rubio-Ponce A., and Cantarero A. Ab initio electronic band structure study of III-VI layered semiconductors. European Physical Journal B, 2013, vol. 86, iss. 8, no. 350. DOI:https://doi.org/10.1140/epjb/e2013-40141-1.
22. 22. Brudnyi V.N., Sarkisov S.Yu., and Kosobutsky A.V. Electronic properties of GaSe, InSe, GaS and GaTe layered semiconductors: charge neutrality level and interface barrier heights. Semiconductor Science and Technology, 2015, vol. 30, iss.11, no. 115019. DOI:https://doi.org/10.1088/0268-1242/30/11/115019.
23. 23. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, vol. 27, iss. 15, pp. 1787-1799. DOI:https://doi.org/10.1002/jcc.20495.
24. 24. Dion M., Rydberg H., Schröder E., Langreth D.C., and Lundqvist B.I. Van der Waals density functional for general geometries. Physical Review Letters, 2004, vol. 92, iss. 24, no. 246401. DOI:https://doi.org/10.1103/PhysRevLett.92.246401.
25. 25. Lee K., Murray E.D., Kong L., Lundqvist B.I., and Langreth D.C. Higher-accuracy van der Waals density functional. Physical Review B, 2010, vol. 82, iss. 8, no. 081101. DOI:https://doi.org/10.1103/PhysRevB.82.081101.
26. 26. Tkatchenko A. and Schefer M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 2009, vol. 102, iss. 7, no. 073005. DOI:https://doi.org/10.1103/PhysRevLett.102.073005.
27. 27. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L, Cococcioni M., Dabo I., et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, vol. 21, iss. 39, no. 395502. DOI:https://doi.org/10.1088/0953-8984/21/39/395502.
28. 28. Kosobutsky A.V. and Basalaev Yu.M. Electronic band structure of LiInSe2: A rst-principles study using the Tran-Blaha density functional and GW approximation. Solid State Communications, 2014, vol. 199, pp. 17-21. DOI:https://doi.org/10.1016/j.ssc.2014.08.015.
29. 29. Cooper V.R. Van der Waals density functional: An appropriate exchange functional. Physical Review B, 2010, vol. 81, iss. 16, no. 161104. DOI:https://doi.org/10.1103/PhysRevB.81.161104.
30. 30. Rigoult J., Rimsky A., and Kuhn A. Renement of the 3R gamma-indium monoselenide structure type. Acta Crystallographica Section B-Structural Science, 1980, vol. 36, iss. APR, pp. 916-918. DOI:https://doi.org/10.1107/S0567740880004840.
31. 31. Sarkisov S.Y., Kosobutsky A.V., and Shandakov S.D. Effect of van der Waals interactions on the structural and binding properties of GaSe. Journal of Solid State Chemistry, 2015, vol. 232, pp. 67-72. DOI:https://doi.org/10.1016/j.jssc.2015.09.002.
32. 32. Graziano G., Klimes J., Fernandez-Alonso F., and Michaelides A. Improved description of soft layered materials with van der Waals density functional theory. Journal of Physics-Condensed Matter, 2012, vol. 24, iss. 42, no. 424216. DOI:https://doi.org/10.1088/0953-8984/24/42/424216.
33. 33. Song J.-W., Giorgi G., Yamashita K., and Hirao K. Singularity-free hybrid functional with a Gaussian attenuating exact exchange in a plane-wave basis. Journal of Chemical Physics, 2013, vol. 138, iss. 24, no. 241101. DOI:https://doi.org/10.1063/1.4811775.
34. 34. Camassel J., Merle P., Mathieu H., and Chevy A. Excitonic absorption edge of indium selenide. Physical Review B, 1978, vol. 17, iss. 12, P. 4718-4725. DOI:https://doi.org/10.1103/PhysRevB.17.4718.
35. 35. Debbichi L., Eriksson O., and Lebègue S. Two-dimensional indium selenides compounds: An ab-initio study. Journal of Physical Chemistry Letters, 2015, vol. 6, iss. 15, pp. 3098-3103. DOI:https://doi.org/10.1021/acs.jpclett.5b01356