Россия
Россия
Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
Within the generalized gradient aproximation of the Density Functional Theory (DFT) with the PBE exchange-correlation functional in the basis of localized atomic orbital of CRYSTAL14 program code, the study is conducted to evaluate the structural, electronic and oscillatory properties of zinc nitrate and its crystal hydrates Zn(NO3)2 • nH2O (n = 2,4,6), with its tested method using the zinc oxide. The first-principle structural study is performed at the full optimization of the lattice distance and atomic positions for the zinc nitrate in the cubic lattice and that of crystal hydrates - in monoclinic lattice. Elastic properties of the nitrate are studied and the mechanical stability is approved using the Born criteria. Electronic properties of rated structures are assessed by energetic (energy-band picture, full and partial density of states) and spatial electron distribution (electronic and deformation density, population density of atomic membranes and density of their overlapping). Crystal hydrates show the electrostatic pattern of nitrogroup interaction and water molecules, availability of localized valence bands and areas of vacant state of anion and cation origin. Oscillatory properties are studied by calculation of frequencies and intensity of IR-active normal long-wave oscillation. In crystal hydrates, the appearance of additional oscillation frequency O-H in terms of nitrate 3000 cm-1 above the IR-spectrum in water molecules and within the area 1200÷1600 cm-1 - of hybrid with nitrogroups.
Zinc nitrate, crystal hydrates, zinc oxide, crystalline structure, chemical bonding, atomic charge, band structure, density of states, IR spectra
1. 1. Wahab R., Kim Y.-S.,and Shin H.-S. Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. Materials Transactions, 2009, vol. 50, iss. 8, pp. 2092-2097. DOIhttps://doi.org/10.2320/matertrans.M2009099.
2. 2. Azlinda A., Eswar K.A., Husairi F.S., Khusaimi Z., and Rusop M. Optical Properties of Nano-Porous Structure ZnO Prepared by Catalytic-Immersion Method. IOP Conference Series-Materials Science and Engineering, 2013, vol. 46, no. UNSP 012044. DOIhttps://doi.org/10.1088/1757-899X/46/1/012044.
3. 3. Bazant P., Klofac J., Munster L., and Kuritka I. Antibacterial Powders for Medical Application Prepared by Microwave Hydrothermal Assisted Synthesis. Nanoscience and Nanotechnology, 2016, vol. 6(1A), pp. 88-91. DOI:https://doi.org/10.5923/c.nn.201601.17.
4. 4. Lu R.Y., Han Z.B. Hydrothermal Synthesis and Crystal Structure of a New 2D Metal_Organic Framework: [Zn(Btca)(Phen)]n (H2Btca = Benzotriazole_5_Carboxylic Acid, Phen = 1,10_Phenanthroline). Russian Journal of Coordination Chemistry, 2011, vol. 37, iss. 3, pp. 172-175. DOI:https://doi.org/10.1134/S1070328411020047.
5. 5. Kołodziejczak-Radzimska A. and Jesionowski T. Zinc Oxide - From Synthesis to Application: A Review. Materials, 2014, vol. 7, iss. 4, pp. 2833-2881. DOI:https://doi.org/10.3390/ma7042833.
6. 6. Zhai B.G., Ma Q.L., and Huang Y.M. Top-down synthesis of ZnO hexagonal pyramids and towers via thermal decomposition of zinc nitrate. Optoelectronic Materials, 2016, vol. 1, pp. 1-6. Available at: http://www.lcst-cn.org/main_01.html.
7. 7. Wei A., Pan L., and Huang W. Recent progress in the ZnO nanostructure-based sensors. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, vol. 176, iss. 18, pp. 1409-1421. DOI:https://doi.org/10.1016/j.mseb.2011.09.005.
8. 8. Nikolic R., Zec S., Maksimovic V., and Mentus S. Physico-chemical characterization of thermal decomposition course in zinc nitrate-copper nitrate hexahydrates. Journal of Thermal Analysis and Calorimetry, 2006, vol. 86, iss. 2, pp. 423-428. DOI:https://doi.org/10.1007/s10973-005-7237-z.
9. 9. Campbell I.D. E.s.r. investigation of the thermal decomposition of zinc nitrate hexahydrate. Journal of the Chemical Society-Faraday Transactions, 1977, vol. 73, pp. 487-493. DOI:https://doi.org/10.1039/F19777300487.
10. 10. Ribar D., Nowacki B., Sljukic W., Scavnicar M., and Gabela S. Die kristallstruktur von Zn(NO3)2 • 2H2O. Zeitschrift fur Kristallographie, 1969, vol. 129, pp. 305-317. DOI:https://doi.org/10.1524/zkri.1969.129.5-6.305.
11. 11. Petrovic B. and Ribar D. A redertimination of the crystal structure of Zn(NO3) • (H2O)2. Acta Crystallographica B-Structurak Science, 1975, vol. 31, iss. 15, pp. 1795-1796. DOIhttps://doi.org/10.1107/S0567740875006243.
12. 12. Ribar D., Matkovic B., Nowacki B., Sljukic W., and Gabela M. Die Kristallstruktur von Zn(NO3)2 • (H2O)4. Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 1970, vol. 131, pp. 175-185.
13. 13. Ferrari A., Tiripicchio A., Braibanti A., and Lanfredi A.M.M. Crystal structures of nitrates of divalent hexaquocations I. Hexaquozinc Nitrate. Acta Crystallographica B-Structurak Science, 1967, vol. 22, pp. 240-246. DOIhttps://doi.org/10.1107/S0365110X67000416.
14. 14. Witko E.M., Buchanan W., Timothy D., and Korter M. The importance of London dispersion forces in crystalline magnesium nitrate hexahydrate. Inorganica Chimica Acta, 2012, vol. 389, pp. 176-182. DOI:https://doi.org/10.1016/j.ica.2012.03.001.
15. 15. Wyckoff R.W.G. Structure of Crystals. The Chemical Catalog Company. New York: published by The Chemical Catalog Company, 1931. pp. 274 - 280.
16. 16. Dovesi R., Orlando R., Erba A.,. Zicovich-Wilson C. M, Civalleri B., Casassa S., Maschio L., Ferrabone M., Pierre M. De La, D’Arco Ph., Noel Y., Causa M., Rerat M., and Kirtman B. CRYSTAL14: A Program for the Ab initio Investigation of Crystalline Solids. International Journal of Quantum Chemistry, 2014, vol. 114, iss. 19, pp. 1287. DOI:https://doi.org/10.1002/qua.24658.
17. 17. Perdew J.P., Burke K., and Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, vol. 77, pp. 3865-3868. DOI:https://doi.org/10.1103/PhysRevLett.77.3865.
18. 18. Adamo C. and Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics, 1997, vol. 110, iss. 13, pp. 6158-6170. DOI:https://doi.org/10.1063/1.478522.
19. 19. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Doll K., Harrison N. M., Civalleri B., Bush I. J. et al., CRYSTAL14. User’s Manual. Available at: http://www.crystal.unito.it.
20. 20. Erba A., Ruggiero M.T., Korter T.M., and Dovesi R. Piezo-optic tensor of crystals from quantum-mechanical calculations. Journal of Chemical Physics, 2015, vol. 143, iss. 14, no. 144504. DOI:https://doi.org/10.1063/1.4932973.
21. 21. Salustro S., Erba A., Zicovich-Wilson C.M., Noeel Y., Maschio L., and Dovesi R. Infrared and Raman spectroscopic features of the self-interstitial defect in diamond from exact-exchange hybrid DFT calculations. Physical Chemistry Chemical Physics, 2016, vol. 18, iss. 31, pp. 21288-21295. DOI:https://doi.org/10.1039/c6cp02403c.
22. 22. Heyd J., Peralta J.E. Scuseria G.E., and Martin R.L. Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. Journal of Chemical Physics, 2005, vol. 123, iss. 17, no. 174101. DOI:https://doi.org/10.1063/1.2085170.
23. 23. Gatti C., Saunders V.R., and Roetti C. Crystal-eld effects on the topological properties of the electron-density in molecular-crystals - the case of urea. Journal of Chemical Physics, 1994, vol. 101, iss. 12, pp. 10686-10696. DOI:https://doi.org/10.1063/1.467882.
24. 24. Kisi E. and Elcombe M.M. U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallographica Section C-Crystal structure Communications, 1989, vol. 45, pp. 1867-1870. DOIhttps://doi.org/10.1107/S0108270189004269.
25. 25. Karzel H., Potzel W., Koofferlein M., Schiessl W., Steiner M., Hiller U., Kalvius G.M., Mitchell D.W., Das T.P., Blaha P., Schwarz K., and Pasternak M.P. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Physical Review B, 1996, vol. 53, iss. 17, pp. 11425-11438. DOI:https://doi.org/10.1103/PhysRevB.53.11425.
26. 26. Tu Z.C. and Hu X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Physical Review B, 2006, vol. 74, iss. 3, no. 035434. DOI:https://doi.org/10.1103/PhysRevB.74.035434.
27. 27. Jang S.-H. and Chichibu S.F. Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. Journal of Applied Physics, 2012, vol. 112, no. 073503. DOI:https://doi.org/10.1063/1.4757023.
28. 28. Wang X., Gu Y., Sun X., Wang H., and Zhang Y. Third-order elastic constants of ZnO and size effect in ZnO nanowires. Journal of Applied Physics, 2014, vol. 115, iss. 21, no. 213516. DOI:https://doi.org/10.1063/1.4881775.
29. 29. Bhat S.S., Waghmare U.V., and Ramamurty U. Effect of oxygen vacancies on the elastic properties of zinc oxide: A ferst-principles investigation. Computational Materials Science, 2015, vol. 99. pp. 133-137. DOI:https://doi.org/10.1016/j.commatsci.2014.12.005.
30. 30. Desgreniers S. High-density phases of ZnO: structural and compressive parameters. Physical Review B, 1998, vol. 58, iss. 21, pp. 14102-14105. DOI:https://doi.org/10.1103/PhysRevB.58.14102.
31. 31. Jaffe J.E., Snyder J.A., Lin Z., Hess A.C. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Physical Review B, 2000, vol. 62, iss. 3. pp. 1660-1665. DOI:https://doi.org/10.1103/PhysRevB.62.1660.
32. 32. Kucheyev S.O., Bradby J.E., Williams J.S., Jagadish C., and Swain M.V. Mechanical deformation of single-crystal ZnO. Applied Physics Letters, 2002, vol. 80, iss.6, pp. 956-958. DOI:https://doi.org/10.1063/1.1448175.
33. 33. Reynolds D.C., Look D.C., Jogai B., Litton C.W., Cantwell G., and Harsch W.C. Valence band ordering in ZnO. Physical Review B, 1999, vol. 60, iss. 4, pp. 2340-2344. DOI:https://doi.org/10.1103/PhysRevB.60.2340.
34. 34. Bourfaa F., Zeggar M.L., Adjimi A., Aida M.S., and Attaf N. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors. 5th International Conference on Materials and Applications for Sensors and Transducers (IC-MAST), 2016, vol. 108, no. 012049. DOI:https://doi.org/10.1088/1757-899X/108/1/012049.
35. 35. Wu H.-C., Chen H.-H., and Zhu Y.-R. Effects of Al-Impurity Type on Formation Energy, Crystal Structure, Electronic Structure, and Optical Properties of ZnO by Using Density Functional Theory and the Hubbard-U Method. Materials, 2016, vol. 9, iss. 8, pp. 647. DOI:https://doi.org/10.3390/ma9080647.
36. 36. Zemzemi M. and Alaya S. First Principles Study of the Structural and Electronic Properties of the ZnO/Cu2O Heterojunction. Materials Sciences and Applications, 2015, vol. 6, pp. 661-675. Available at: http://dx.doi.org/10.4236/msa.2015.67068 (accessed July 2015).
37. 37. Venger E.F., Melnichuk A.V., Melnichuk Lu., and Pasechnik Yu.A. Anisotropy of the ZnO Single Crystal Reflectivity in the Region of Residual Rays. Physica Status Solidi B-Dasic Research, 1995, vol. 188, iss. 2, pp. 823-831. DOI:https://doi.org/10.1002/pssb.2221880226.
38. 38. Wu X., Lee J., Varshney V., Wohlwend J.L., Roy A.K., and Luo, T.F. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics - a Comparative Study with Gallium Nitride. Scientic Reports, 2016, no. 22504. DOI:https://doi.org/10.1038/srep22504.
39. 39. Lyakhov A.O., Oganov A.R., Stokes H.T., and Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications, 2013, vol. 184, iss. 4, pp. 1172-1182. DOI:https://doi.org/10.1016/j.cpc.2012.12.009.
40. 40. Yedukondalu N. and Vaitheeswaran G. Ab-initio study of structural, vibrational and optical properties of solid oxidizers. Materials Chemistry and Physics, 2016, vol. 181, pp. 54-66. DOI:https://doi.org/10.1016/j.matchemphys.2016.06.033.
41. 41. Yedukondalu N., Ghule V.D., and Vaitheeswaran G. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide. Journal of Chemical Physics, 2016, vol. 145, iss. 6, no. 064706. DOI:https://doi.org/10.1063/1.4959900.
42. 42. Nowotny H. and Heger G. Structure renement of strontium nitrate, Sr(NO3)2, and barium nitrate, Ba(NO3)2. Acta Crystallographica Section C-Crystal structure Communications, 1983, vol. 39, iss. AUG, pp. 952-956. DOI:https://doi.org/10.1107/S0108270183006976.
43. 43. Nowotny H. and Heger G. Structure renement of strontium nitrate. Acta Crystallographica Section C-Crystal structure Communications, 1986, vol. 42. pp. 133-135. DOIhttps://doi.org/10.1107/S0108270186097032.
44. 44. Liang M.-K., Limo M.J., Sola-Rabada A., Roe M.J., and Perry C.C. New Insights into the Mechanism of ZnO Formation from Aqueous Solutions of Zinc Acetate and Zinc Nitrate. Chemistry of Materials, 2014, vol. 26, iss. 14, pp. 4119-4129. DOI:https://doi.org/10.1021/cm501096p.
45. 45. Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. London A, 1952, vol. 65, pp. 349-354. DOI:https://doi.org/10.1088/0370-1298/65/5/307.
46. 46. Anderson O.L. A simplified method for calculating the de bye temperature from elastic constant. J. Phys. Chem. Solids, 1963, vol. 24, pp. 909-917. DOIhttps://doi.org/10.1016/0022-3697(63)90067-2.
47. 47. Schefer J. and Grube M. Low temperature structure of magnesium nitrate hexahydrate, Mg(NO3)2 • 6H2O: A neutron diffraction study at 173 K. Materials Research Bulletin, 1995, vol. 30, iss. 10, pp. 1235-1241. DOI:https://doi.org/10.1016/0025-5408(95)00122-0