Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
This paper studies the existence of left-invariant Sasaki contact structures on the seven-dimensional nilpotent Lie groups. It is shown that the only Lie group allowing Sasaki structure with a positive definite metric tensor is the Heisenberg group A complete list of 22 classes of seven-dimensional nilpotent Lie groups which admit pseudo-Riemannian Sasaki structures is found. A list of 25 classes of seven-dimensional nilpotent Lie groups admitting K-contact structures, but not pseudo-Riemannian Sasaki structures, is also presented. All the contact structures considered are central extensions of six-dimensional nilpotent symplectic Lie groups. Formulas that connect the geometric characteristics of six-dimensional nilpotent almost pseudo-Kähler Lie groups and seven-dimensional nilpotent contact Lie groups are established. As is known, for six-dimensional nilpotent pseudo-Kähler Lie groups the Ricci tensor is always zero. In contrast to the pseudo-Kӓhler case, it is shown that on contact seven-dimensional Lie algebras the Ricci tensor is nonzero even in directions of the contact distribution
Nilmanifolds, seven-dimensional nilpotent Lie algebras, left-invariant contact structures, K-contact structures, Sasaki structures, pseudo-Kähler Lie groups, symplectic Lie groups
1. 1. Benson C. and Gordon C.S. Kahler and symplectic structures on nilmanifold. Topology, 1988, vol. 27, iss. 4, pp. 513-518. DOI:https://doi.org/10.1016/0040-9383(88)90029-8.
2. 2. Blair D.E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics. New York: Springer-Verlag Publ., 1976. 148 p.
3. 3. Cappelletti-Montano B., De Nicola A., and Yudin I. Hard Lefschetz Theorem for Sasakian manifolds. Journal of Differential Geometry, 2015, vol. 101, iss. 1, pp. 47-66.
4. 4. Cappelletti-Montano B., De Nicola A., Marrero J.C., and Yudin I. Examples of compact K-contact manifolds with no Sasakian metric. International Journal of Geometric Methods in Modern Physics, 2014, vol. 11, iss. 9, no. 1460028. DOI:https://doi.org/10.1142/S0219887814600287.
5. 5. Cordero L.A., Fernández M., and Ugarte L. Pseudo-Kahler metrics on six-dimensional nilpotent Lie algebras. Journal of Geometry and Physics, 2004, vol. 50, iss. 1-4, pp. 115-137. DOI:https://doi.org/10.1016/j.geomphys.2003.12.003.
6. 6. Diatta A. Left invariant contact structures on Lie groups. Differential Geometry and its Applications, 2008, vol. 26, iss. 5, pp. 544-552. DOI:https://doi.org/10.1016/j.difgeo.2008.04.001.
7. 7. Khakimdjanov Y., Goze M., and Medina A. Symplectic or contact structures on Lie groups. Differential Geometry and its Applications, 2004, vol. 21, iss. 1, pp. 41-54. DOI:https://doi.org/10.1016/j.difgeo.2003.12.006.
8. 8. Goze M. and Remm E. Contact and Frobeniusian forms on Lie groups. Differential Geometry and its Applications, 2014, vol. 35, pp. 74-94. DOI:https://doi.org/10.1016/j.difgeo.2014.05.008.
9. 9. Kutsak S. Invariant contact structures on 7-dimensional nilmanifolds. Geometriae Dedicata, 2014, vol. 172, pp. 351-361. DOI:https://doi.org/10.1007/s10711-013-9922-6.
10. 10. Kobayashi S. and Nomizu K. Osnovy differentsial’noy geometrii [Foundations of Differential Geometry]. Moscow: Nauka Publ., 1981, vol. 1 and vol. 2.
11. 11. Salamon S. Complex structures on nilpotent Lie algebras. Journal of Pure and Applied Algebra, 2001, vol. 157, iss. 2-3, pp. 311-333. DOI:https://doi.org/10.1016/S0022-4049(00)00033-5.
12. 12. Smolentsev N.K. Kanonicheskie psevdokelerovy metriki na shestimernykh nil’potentnykh gruppakh Li [Canonical pseudo-Kahler structures on six-dimensional nilpotent Lie groups]. Vestnik KemGU [Kemerovo State University Bulletin], 2011, no. 3/1 (47), pp. 155-168.
13. 13. Smolentsev N.K. Canonical almost pseudo-Kӓhler structures on six-dimensional nilpotent Lie groups. Differential Geometry, 2013, part 1, pp. 95-105. Available at: https://arxiv.org/abs/1310.5395