Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
A Bose-Einstein condensate of bosons with repulsion, described by the Gross-Pitaevskii equation and restricted by an impenetrable “hard wall” (either rigid or flexible) which is intended to suppress the “snake instability” inherent for dark solitons, is considered. The Bogoliubov-de Gennes equations to find the spectra of gapless Bogoliubov excitations localized near the “domain wall” and therefore split from the bulk excitation spectrum of the Bose-Einstein condensate are solved. The “domain wall” may model either the surface of liquid helium or of a strongly trapped Bose-Einstein condensate. The dispersion relations for the surface excitations are found for all wavenumbers along the surface up to the ”free-particle” behavior , the latter was shown to be bound to the “hard wall” with some “universal” energy .
a Bose-Einstein condensate, the Bogoliubov-de Gennes equation, the Gross-Pitaevskii equation
1. Gross E.P. Unified Theory of Interacting Bosons. Phys. Rev, vol. 106, no. 1, 1957, pp. 161-164.
2. Pitaevskii L., Stringari S. Bose Einstein Condensation. Oxford: Clarendon Press, 2003. 382 p.
3. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 1968, vol. 9, no. 2, pp. 190-194. doihttps://doi.org/10.1007/BF00913182.
4. Dziarmaga J. Quantum dark soliton: Nonperturbative diffusion of phase and position. Phys. Rev. A, 2004, vol. 70, pp. 35-59.
5. Chen X.J., Chen Z.D., Huang N.N. A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions. J. Phys. A: Math. Gen., 1998, vol. 31, pp. 69-29.
6. Gennes P.G., Saint-James D. Elementary excitations in the vicinity of a normal metal-superconducting metal contact. Phys. Lett., 1963, vol. 4, pp. 151-152.
7. Garay L.J., Anglin J.R., Cirac J.I, Zoller P. Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Phys. Rev. Lett., 2000, vol. 85, pp. 46-43.
8. Larré P.-É., Recati A., Carusotto I., Pavlòff N. Quantum fluctuations around black hole horizons in Bose-Einstein condensates.
9. Phys. Rev. A, 2012, vol. 85. doi:https://doi.org/10.1103/PhysRevA.85.013621.
10. Shams A., DuBois J.L., Glyde H. R. Localization of Bose-Einstein Condensation by Disorder. J. Low Temp.Phys., 2006, vol. 145, pp. 357-367.
11. Griffin A., Stringari S. Collective Excitations of a Trapped Bose-Condensed Gas. Phys. Rev. Lett., 1996, vol. 76, pp. 2360-2363.
12. Anglin J.R. Local Vortex Generation and the Surface Mode Spectrum of Large Bose-Einstein Condensates. Phys. Rev. Lett., 2001, vol. 87. doi:https://doi.org/10.1103/PhysRevLett.87.240401.
13. Kuznetsov E.A., Turitsyn S.K. Soliton instability and collapse in media with defocusing nonlinearity. Sov. Phys. JETP, 1988, vol. 67, pp. 119-129.
14. Indekeu J.O., Schaeybroeck B. Extraordinary Wetting Phase Diagram for Mixtures of Bose-Einstein Condensates. Phys. Rev. Lett., 2004, vol. 93. doi:https://doi.org/10.1103/PhysRevLett.93.210402.
15. Kuga T., Torii Y., Shiokawa N., Hirano T., Shimizu Y., Sasada H. Novel Optical Trap of Atoms with a Doughnut Beam Phys. Rev. Lett., 1997, vol. 78, pp. 4713-4716.
16. Pikhitsa P.V. Surface excitations of a nonideal bose gas. Physica B, 1992, vol. 179, pp. 201-207.
17. Muryshev A.E., Heuvel H. B. van Linden, Shlyapnikov G. V. Stability of standing matter waves in a trap. Phys. Rev., 1999, vol. 60, R2665.
18. Pitaevskii L.P. Properties of the Spectrum of Elementary Excitations near the Disintegration Threshold of the Excitations Sov.
19. Phys. JETP 13, 1961, vol. 451, pp. 830-838.
20. Landau L.D., Lifshits E.M. Quantum Mechanics. NY: Pergamon Press, 1977. 691 p.
21. Tirao J.A. The matrix-valued hypergeometric equation. PNAS, 2003, vol. 100, pp. 8138-8141. doi:https://doi.org/10.1073/pnas.1337650100.
22. Jódar L., Cortés J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett., 1998, vol. 11, no. 1, pp. 89-93.